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A THIRD-ORDER MULTIRATE RUNGE–KUTTA SCHEME
FOR FINITE VOLUME SOLUTION

OF 3D TIME-DEPENDENT MAXWELL’S EQUATIONS

MARINA KOTOVSHCHIKOVA, DMITRY K. FIRSOV AND SHIU HONG LUI

A third-order multirate time-stepping based on an SSP Runge–Kutta method
is applied to solve the three-dimensional Maxwell’s equations on unstructured
tetrahedral meshes. This allows for an evolution of the solution on fine and coarse
meshes with time steps satisfying a local stability condition to improve the compu-
tational efficiency of numerical simulations. Two multirate strategies with flexible
time-step ratios are compared for accuracy and efficiency. Numerical experiments
with a third-order finite volume discretization are presented to validate the theory.
Our results of electromagnetic simulations demonstrate that 1D analysis is also
valid for linear conservation laws in 3D. In one of the methods, significant speedup
in 3D simulations is achieved without sacrificing third-order accuracy.

1. Introduction

Many real life simulations require complicated geometries and highly nonuniform
meshes. When explicit methods are used, the maximum allowed time step is defined
by the smallest elements in the mesh. When a fine mesh is required only in a small
region of a computational domain, it is not a desirable expense. In addition, when
a small time step is used on a coarse grid, it often generates dissipation in the
solution. To overcome the need for a restrictive time step, local time-stepping (LTS)
or multirate methods are very useful. In this case local stability conditions (CFL)
are imposed on subdomains of the computational domain in place of a global more
restrictive stability condition.

The earliest works on multirate methods include multirate Runge–Kutta schemes
by Rice [32] and Andrus [2; 3], multirate linear multistep by Gear and Wells [16],
and local time-stepping with forward Euler by Osher and Sanders [30]. Over the
last three decades multirate versions of many traditional temporal schemes, such
as explicit Runge–Kutta [10; 11; 20; 27; 38], Adams–Bashforth [33], as well as
implicit-explicit (IMEX) methods [34] were designed.
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In the computational electromagnetics literature one can find LTS versions of leap-
frog schemes [9; 29; 18; 4], multistage (Runge–Kutta, predictor-corrector) [4; 15]
and multistep (Adams–Bashforth) explicit methods [17; 19], Cauchy–Kovalevskaja
procedures [39], and locally implicit time integration [12]. In [8] a method based
on Yee’s scheme with special discrete transmission conditions for unknown values
at the interface between LTS subdomains was developed, and applied to the 3D
Maxwell’s equations in [9]. A space-time mesh refinement method is implemented
with a discontinuous Galerkin (DG) space discretization for first-order hyperbolic
systems in [14]. The advantage of the space-time mesh refinement method is that it
guarantees the stability of the scheme by enforcing conservation of discrete energy.
But it requires solution of a linear system at the interface between two grids at
each time step. This becomes more and more computationally expensive as we
increase the number of multirate domains in 3D space. An LTS method based
on the symplectic Störmer–Verlet scheme was proposed by Piperno in [31]. The
scheme with two levels of refinement was proven to conserve discrete energy. In [29]
Montseny et al. followed the same idea to develop a leap-frog-based LTS scheme. In
both cases time increments proportional to 2 are used and the latest available solution
is used for coupling at the interface between domains with different time steps.
In [13] Diaz and Grote derived an arbitrary (even) high-order LTS method for the
second-order wave equation. Their method is based on an extension of the second-
order leap-frog scheme by a modified equation approach [36]. The method was
proven to conserve discrete energy under some CFL condition. Its implementation
for the 2D Maxwell’s equations can be found in [18]. An LTS method based on
Adams–Bashforth multistep schemes was developed by the same authors in [19],
and another implementation can be found in [17]. In [39] an LTS technique based
on the arbitrary high-order derivatives (ADER) DG method was proposed. Unlike
methods based on multistage time integration, there is no consistency challenge
between solutions at different time increments in the ADER approach. This allows
for a more flexible distribution of local time steps with optimal performance. A
causal-path LTS technique utilizing multistage time schemes has been proposed by
Angulo et al. in [4]. It was applied to Maxwell’s equations using fourth-order RK
and second-order leap-frog as base time integration schemes. Their LTS approach
requires a computation of the stage value of neighbors in order to advance the
solution on a given subdomain. Therefore, the idea is similar to the one proposed
by Tang and Warnecke in [38].

In this work we analyze and implement two LTS approaches based on third-order
strong stability preserving (SSP) Runge–Kutta to improve efficiency of third-order-
accurate 3D electromagnetic simulations. One is a third-order extension of the idea
proposed by Tang and Warnecke [38]. It is based on a projection of the solution
to provide consistent coupling at LTS interfaces. Another one uses interpolation
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of stage values for the same purpose [27]. Both schemes allow arbitrary time-step
ratios and are relatively inexpensive to implement with any 3D finite volume scheme
on tetrahedral meshes. The flexible time-step ratio gives more optimal simulation
speedup on nonuniform meshes with large differences in cell size without loss of
accuracy. A linear version of order conditions is used to analyze the accuracy of both
schemes. Our analysis shows that a third-order extension of the scheme from [38]
leads to only a first-order coupling, while the scheme proposed in [27] maintains
third-order accuracy. Both schemes are implemented for the 3D time-domain
Maxwell’s equations with a third-order finite volume spatial approximation. Two
strategies to define local time-step distribution are compared. One is a traditional
power of 2 base partition, and another one is based on a more flexible time-step ratios
and optimization algorithm. Numerical results in 1D and 3D with both schemes
confirm our theoretical results. Moreover, both proposed time-step distribution
strategies lead to the same accuracy in our simulations confirming flexibility of
considered schemes. Significant speedup is observed in both schemes for problems
with large linear cell-size ratio.

The paper is organized as follows. Section 2 describes Maxwell’s equations in
the time domain and their finite volume discretization. Section 3 discusses multirate
Runge–Kutta schemes in 1D and their accuracy analysis for linear problems. In
Section 4 a 3D implementation of algorithms using arbitrary time-step distribution
is presented. Finally, Section 5 shows numerical validation of third-order LTS
schemes on 3D electromagnetic problems.

2. Finite volume scheme for Maxwell’s equations

Consider the propagation of electromagnetic waves in a three-dimensional hetero-
geneous linear isotropic medium with space-varying electric permittivity ε = ε(x)
and magnetic permeability µ= µ(x). Given a bounded region �⊂ R3, the electric
field E(x, t) and the magnetic field H(x, t) are governed by the system of Maxwell’s
equations 

ε ∂E
∂t −∇ ×H= JE in [0, T ]×�,

µ ∂H
∂t +∇ ×E= JH , in [0, T ]×�,

an̂×E+ bn̂× (n̂×H)= 0 on [0, T ]× ∂�,
(1)

where JE and JH are the sources consisting of imposed currents and terms introduced
by scattered field formulation, and n̂ is the outward unit normal of the boundary ∂�.
Parameters a and b define different boundary conditions:

• perfect electric conductor (PEC), a = 1 and b = 0,

• perfect magnetic conductor (PMC), a = 0 and b = 1, and

• Silver–Müller absorbing boundary condition, a = 1 and b =
√
µ/ε.
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Consider the normalized quantities

x = l−1x, t = c0l−1t, (2)

where l is a reference length and c0 = (µ0ε0)
−1/2 is a dimensional speed of light in

vacuum with ε0 ≈ 8.854 · 10−12 A·s
V·m and µ0 = 4π · 10−7 V·s

A·m . The fields E and H
can be normalized to a typical electric field intensity E by

E =
E
E
, H =

Z0

E
H, JE =

l Z0

E
JE , JH =

l
E

JH , (3)

where Z0 =
√
µ0/ε0 is the dimensional free-space intrinsic impedance. Then the

system (1) can be written in nondimensional form as
εr
∂E
∂t −∇ × H = JE in [0, c0l−1T ]×�,

µr
∂H
∂t +∇ × E = JH in [0, c0l−1T ]×�,

ar n̂× E+ br n̂× (n̂× H)= 0 on [0, c0l−1T ]× ∂�,
(4)

where εr=ε/ε0,µ=µ/µ0, ar=a, and br=b/Z0. For a finite volume discretization,
the first two equations of (4) are written in conservative form as

α
∂U
∂t
+∇ · F(U)= J,

where

U =
[

H
E

]
, F(U)= [F1(U), F2(U), F3(U)]T , Fi =

[
−ei × H

ei × E

]
,

and

α =

[
εr 0
0 µr

]
, J =

[
JE

JH

]
.

Consider a partition of the bounded domain � ⊂ R3 into a tetrahedral mesh
�T =

⋃N
i=1 T i . It is assumed that material properties are constant in each cell Ti .

Integrating (4) over each tetrahedron Ti and defining the cell-averaged values of a
given function u as ui = (1/|Ti |)

∫
Ti

u dV , the following semidiscrete finite volume
scheme for Maxwell’s equations is derived:

αi
∂U i

∂t
+

1
|Ti |

∫
∂Ti

n̂ · F d S = αi
∂U i

∂t
+

1
|Ti |

4∑
j=1

|Si j |n̂ · F|Si j = Ji , (5)

where n̂ is the outward unit normal of the tetrahedron boundary ∂Ti consisting of four
triangular surfaces Si j , j = 1, . . . , 4. Fluxes are computed using physical properties
on elements Ti and T j . Physical properties are the same inside a homogeneous
medium and different on boundaries between dielectrics. To approximate the flux
on each triangular surface Si j , an upwind scheme based on the Steger–Warming
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flux vector splitting [37] is used. Then a third-order linear scheme [40; 26] is used
to approximate the field components.

3. Multirate Runge–Kutta methods in 1D

Consider the semidiscrete problem defined by the ODE

ut = Lu (6)

on some bounded region � ⊂ R with a given initial value u(0) = u0. Here the
operator L represents the spatial approximation of the linear operator in the conser-
vation law with some given order p. The computational domain is partitioned into
two nonoverlapping subdomains � = D1 ∪ D2 ∪012, where D1 has a fine mesh
with size h/2 and D2 has a coarse mesh with size h, and 012 = ∂D1 ∩ ∂D2 is the
boundary between D1 and D2. Assuming that the local time step satisfying the
CFL condition on D2 is 1t , then the local time step on D1 is 1t/2. Denote by L1

and L2 two projections of the operator L onto domains D1 and D2, respectively;
then we can split the right-hand side of (6) as

ut = L1u+ L2u. (7)

For the analysis of multirate Runge–Kutta schemes it is convenient to consider
their partitioned form (MPRK) [10; 23; 34]. The s-stage multirate Runge–Kutta
method for (7) with two levels of refinement (local time steps) can be written as

u(i) = un
+1t

∑
k=1,2

i−1∑
j=1

a(k)i j Lku( j), i = 1, . . . , s, (8)

un+1
= un
+1t

∑
k=1,2

s∑
i=1

b(k)i Lku(i). (9)

It should be noted that the time-step factor is taken into account in the coefficients
a(1)i j and a(2)i j and s is the number of MPRK stages. The scheme (8)–(9) is internally
consistent if [23]

c(1)i = c(2)i , c(k)i =

s∑
j=1

a(k)i j , i = 1, . . . , s. (10)

This condition ensures that the stage values on adjacent subdomains are consistent
approximations to u(tn

+ci1t). Failure to satisfy the internal consistency condition
may lead to lower accuracy at interface points.

The accuracy of the MPRK schemes in the sense of a truncation error can be
determined using the classic order conditions [21; 24; 1]. A few multirate schemes
based on second-order Runge–Kutta methods satisfying second-order conditions
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exist in literature [10; 38]. But generalizations of these schemes by using third-order
base methods do not automatically generate a third-order MPRK method. The
number of conditions quickly increases with order, and it becomes challenging to
satisfy all of them. For linear problems, however, this number is reduced. For the
third-order scheme the order conditions are given by the following lemma.

Lemma. The multirate partitioned Runge–Kutta method (8)–(9), where L1 and L2

are linear constant-coefficient operators, is third-order accurate if the following
order conditions are satisfied:

(first order) (b(k1))T 1= 1, k1, k2 = 1, 2, (11)

(second order) (b(k1))T c(k2) =
1
2 , k1, k2 = 1, 2, (12)

(third order) (b(k1))T A(k2)c(k3) =
1
6 , k1, k2, k3 = 1, 2. (13)

Proof. The proof is based on the estimate of the local truncation error τ n+1
=

un+1
− ν(tn+1) after the time step 1t , where ν is defined by

νt = Lν, ν(tn)= un.

Using Taylor series expansion for ν(tn+1) and substituting (8) into (9), the following
expression for the truncation error is derived:

τ n+1
=1t

[ ∑
k1=1,2

(1− (b(k1))T 1)Lk1

]
νn

+1t2
[ ∑

k1,k2=1,2

( 1
2 − (b

(k1))T c(k2)
)
Lk1 Lk2

]
νn

+1t3
[ ∑

k1,k2,k3=1,2

( 1
6 − (b

(k1))T A(k2)c(k3)
)
Lk1 Lk2 Lk3

]
νn
+ O(1t4).

The truncation error is O(1t4) if the first three terms are zero. �

Now we consider two multirate schemes with a third-order SSP Runge–Kutta
method as a base. The first scheme is an extension of the second-order scheme
developed in [38] by Tang and Warnecke (MRK-TW). A generalization of their
scheme for two time increments 1t and 1t/2 with an arbitrary base method
(A, b, c) is given in Table 1, where

A1 = [Aê1, Zs,s−1], A2 = A− A1, (14)

b1 = b1 ê1, b2 = b− b1, ê1 = [1, 0, . . . , 0︸ ︷︷ ︸
s

]
T , (15)

and Zs,s−1 is the s× (s− 1) zero matrix.
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D1:
c(1) A(1)

[b(1)]T
=

1
2 c 1

2 A
1
2 1+ 1

2 c 1
2 bT
⊗ 1 1

2 A
1
2 bT 1

2 bT

D2:
c(2) A(2)

[b(2)]T
=

1
2 c 1

2 A
1
2 ê1+ c 1

2 bT
⊗ ê1+ A1 A2

bT
1 bT

2

Table 1. MPRK-TW scheme for arbitrary base method (A, b, c) and time-step ratio 2.

Theorem. The partitioned Runge–Kutta scheme defined by the Butcher tableau in
Table 1 is internally consistent if

c= 1− ê1 (16)

and is second-order accurate if the base method (A, b, c) is at least second-order
accurate and satisfies

b1 =
1
2 . (17)

Moreover, it has at most second-order accurate coupling regardless of the base
method.

Proof. The proof of internal consistency is a straightforward application of the
condition (10). Assuming that the base method (A, b, c) satisfies the second-order
conditions, the coupling conditions ((12), k1 6= k2) applied to the scheme in Table 1
give us

b(1)i c(2)i =
1
2 bT ( 1

2 c+ 1
2 ê1+ c

)
=

3
4(b)

T c+ 1
4 b1 =

1
2 ⇐⇒ b1 =

1
2 ,

b(2)i c(1)i = (b1 êT
1 )

1
2 c+ (b− b1 ê1)

T ( 1
2 1+ 1

2 c
)

=
1
2(b)

T 1− 1
2 b1+

1
2(b)

T c= 1
2 ⇐⇒ b1 =

1
2 .

Hence, the method is second-order accurate provided that b1 =
1
2 . Assume that the

base method (A, b, c) is second-order accurate and also satisfies the third-order
conditions for linear problems ((13), k1 = k2 = k3). One of the linear coupling
conditions in (13) with k1 = 1 and k2 = k3 = 2 gives

(b(1))T A(2)c(2) = 1
2 bT 1

2 A1
2 c+ 1

2 bT (1
2 bT
⊗ ê1+ A1

)1
2 c+ 1

2 bT A2
( 1

2 ê1+ c
)

=
1
8 bT Ac+ 1

16 b1+
1
2 bT Ac= 5

48 +
1

16 b1.

Therefore, the second- and third-order conditions cannot hold together. �

It follows from the theorem that the partitioned Runge–Kutta scheme defined by
the Butcher tableau in Table 1 is only first-order accurate with any third-order base
method.
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To get internal consistency for schemes of order r > 2, solutions on both sides
of the interface 012 need to be adjusted. One strategy that provides higher-order
coupling for linear problems was proposed in [27]. It is third-order accurate for
third-order SSP Runge–Kutta base methods for linear problems (MRK-LLH).

For linear problems the Runge–Kutta method can be written as

u = CT1t Ls un, (18)

un+1
= un
+ bT Lu, (19)

where

u = [u(1), u(2), . . . , u(s)]T , un
= [un, . . . , un︸ ︷︷ ︸

s

]
T ,

Ls = diag{I, L , L2, . . . , Ls−1
}, L = diag{L , L , . . . , L︸ ︷︷ ︸

s

},

C =



1 0 0 · · · 0
1 a21 0 · · · 0
1
∑

a3 j a32a21 · · · 0
...

...
...

. . .
...

...
...

...
. . . 0

1
∑

as j
∑

as j a jk · · · as,s−1 · · · a21


(20)

and
T1t = diag{1,1t, . . . ,1t s−1

}. (21)

Since for the linear case we have

L i u|t=tn =
d i u
dt i

∣∣∣∣
t=tn

, (22)

therefore the RK stage values u can be written in terms of time derivatives of un .
Now consider the partition �= D1 ∪ D2 ∪012 defined by the local time steps

1t1 = 1t/2, and 1t2 = 1t . First the solution is advanced on both subdomains
from t = tn with their local time steps 1t1 and 1t2. The stage values at the time
level tn inside of each subdomain are computed by

uk = CT1tk dun, k = 1, 2, (23)

where

dun
=

[
u,

du
dt
,

d2u
dt2 , . . . ,

ds−1u
dt s−1

]T

t=tn
. (24)

To calculate the fluxes on the interface 012 the stage values ũ1 and ũ2 are needed
for time advancing from t = tn on D2 and D1, respectively. Using (23) the stages
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D1:
c(1) A(1)

[b(1)]T
=

1
2 c 1

2 A 0
1
2 1+ 1

2 c 1
2 bT
⊗ 1 1

2 A
1
2 bT 1

2 bT

D2:
c(2) A(2)

[b(2)]T
=

1
2 c 1

2 A 0
q Q 0

bT G(1) 0

Table 2. MPRK-LLH scheme for arbitrary base method (A, b, c) and time-step ratio 2.

ũ1 and ũ2 are obtained using the coupling [27]

[ũ1]tn = CT1t2 dun
= CT1t2 T−1

1t1 C−1u1 = G(1)u1, (25)

[ũ2]tn = CT1t1 dun
= CT1t1 T−1

1t2 C−1u2 = G(2)u2. (26)

Matrices G(1) and G(2) are lower triangular and have the properties

G(1)G(2)
= G(2)G(1)

= Is, (27)
s∑

j=1

G(1)
i j =

s∑
j=1

G(2)
i j = 1, (28)

G(1)ũ2 = u2, G(2)ũ1 = u1. (29)

At the second step the solution is advanced on the fine mesh only using coupling
stage values ũ2 at the time level t = tn

+1t1 computed by [27]

[ũ2]tn+1t1 = CT1t1 H1t1 T−1
1t2 C−1u2 =: K u2, (30)

where

H1t =


1 1t 1t2/2 · · · 1t s−1/(s− 1)!
0 1 1t · · · 1t s−2/(s− 2)!
0 0 1 · · · 1t s−3/(s− 3)!
...
...

...
. . .

...

0 0 0 . . . 1

 . (31)

The MRK-LLH method described above can be written in the Butcher tableau
form shown in Table 2, where

Q = K AG(1), (32)

and q = [q1, . . . , qs]
T , with

qi =

s∑
j=1

Qi j =

s−1∑
j=1

( s∑
k= j+1

k−1∑
l= j

Kikakl G
(1)
l j

)
. (33)
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Consistency and accuracy analysis for the MPRK-LLH scheme can be summa-
rized by the following theorem.

Theorem. The partitioned Runge–Kutta scheme defined by the Butcher tableau in
Table 2 is internally consistent and third-order accurate with three-stage SSP RK3
schemes for linear problems.

Proof. The scheme is internally consistent by design. It can be shown by verifying
the condition

q = 1
2 1+ 1

2 c. (34)

It also follows from the application of the order conditions (11)–(13) that the scheme
MPRK-LLH is third-order accurate for three-stage RK3 base methods for linear
problems. �

The extension of the scheme to any arbitrary time-step ratio is straightforward [27].
To update stage values the following general coupling expressions replace (25)–(26)
and (30):

[ũ1]tn,k2 = K (1)
1tk2,k1

[u2]tn,k1 , K (1)
1tk2,k1

= CT1t2 H1tk2,k1
T−1
1t1 C−1, (35)

[ũ2]tn,k2 = K (2)
1tk2,k1

[u1]tn,k1 , K (2)
1tk2,k1

= CT1t1 H1tk2,k1
T−1
1t2 C−1. (36)

In the next section we present the steps to implement both schemes on 3D meshes
with arbitrary time-step ratios.

4. MRK scheme in 3D

Consider a semidiscrete system of Maxwell’s equations (5) written as

Ut = LU, (37)

and defined on a computational domain with mesh �T =
⋃N

i=1 T i . This domain
is partitioned into K multirate groups of elements �T =

⋃K
k=1 D(k) using a local

stability criterion. Let {1τi }
N
i=1 be a set of characteristic stable time steps obtained

by [7]

1τi ≤
|Ti |

ci
∑

j∈Ii
|Si j |

, (38)

for each cell Ti with volume |Ti |, where Ii is the set of indexes of neighboring
elements, and |Si j | is the area of the face shared by element Ti and its j -th neighbor.
Let 1tmin=mini {1τi } and 1tmax=maxi {1τi }. Each time step 1tk can be defined
as a product of 1tmin and some rational number 0 ≤ pk ≤1tmax/1tmin. Then K
multirate groups can be defined as

D(k)
=

{
{Ti ∈�, 1τi ∈ [1tk,1tk+1)}, k = 1, . . . , K − 1,
{Ti ∈�, 1τi ∈ [1tk,1tmax)}, k = K .

(39)
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Each multirate group consists of elements of bulk group D(k)
bulk and inner buffer

group D(k)(0). Bulk group D(k)
bulk includes all elements of D(k) that are sufficiently

far from the boundary 0k = ∂D(k)
∩
(⋃K

l=1, l 6=k ∂D(l)
)
; therefore, time integration on

these elements does not depend on values from neighboring multirate groups. The
size of the inner buffer D(k)(0) depends on the order of finite volume approximation
and consists of elements of D(k) nearest to 0k for which time integration involves
values from adjacent multirate groups. In addition to bulk and inner buffer groups
we need to define outer buffer groups, where the values of adjacent multirate groups
are updated to ensure proper coupling. Let 1t be the global time step, at which the
solution in all multirate groups is synchronized, and the final time is achieved after
N t global time integrations, i.e., T = N t1t . Assuming that each global time step
from tn to tn+1 consists of m local multirate stages, we associate to each multirate
group D(k) the local time tn,l

k , l ∈ {1, . . . ,m}, at the l-th multirate stage. The global
time tn,l is defined by local times tn,l

k , and its definition depends on the multirate
scheme.

The most common definition of local time steps [15; 29; 31; 35] is given by

{1tk}
K2
k=1 = {2

k−11tmin}
K2
k=1, K2 =

⌊
log2

1tmax

1tmin

⌋
+ 1.

Another set of factors {pk}
K
k=1 that we found to give better distribution of local

time steps is given by
{pk}

K
k=1 = {K/k1tmin}

K
k=0,

where

K =
⌊
1tmax

1tmin

⌋
. (40)

This partition is then optimized by varying the parameters1tmin and κ and removing
unnecessary groups. We will refer to this partition as optimized partition (OP). The
outline of the optimization procedure is the following:

(1) Using the values of 1tmin and K defined by (40) we introduce two parameters
for the new multirate partition

1t∗min = α1tmin, α ∈ [0.8, 1], (41)

K ∗ = βK , β ∈ [0.8, 1.2]. (42)

It should be noted that broader ranges of values for the parameters α and β
introduced too many local minima (and repeating time-step distributions) for
the optimization procedure to be efficient.

(2) For a randomly chosen pair (1t∗min, K ∗) using a certain search procedure,

(a) construct a multirate partition;
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(b) remove unnecessary multirate groups: if a subdomain with 1tk consists
of a few isolated elements, add it to the subdomain with 1tk−1; and

(c) estimate theoretical speedup from the resulting partition.

(3) Go to step 2 if the convergence criterion is not satisfied. If converged, take the
best estimated partition as the final choice.

In the present work an improved controlled random search algorithm by [28] was
used as a searching procedure. It was run once before the simulation with a limit of
200 iterations, and usually took around 30 iterations to converge. The final partition
is defined by the optimal pair (1t∗min, K ∗) and after merging of unnecessary MRK
groups has the total number of multirate groups ≤ K ∗. The convergence criterion
is based on the theoretical speedup formula given by

S =
1t−1

mins N∑κ
k=11t−1

k s ND(k)

, (43)

where N is the total number of mesh elements, s is the number of Runge–Kutta
stages, and ND(k) is the number of elements in the D(k) multirate group. During the
initialization, the local time-step partition is computed and subdomains are deter-
mined. Multirate partitions are defined so that all local times tn,l

k are synchronized
at some global time step 1t . As a result the computational process can be divided
into N blocks with global time step 1t . In this work only static meshes were used
in simulations. The same idea for multirate partitioning can be applied to dynamic
mesh refinement. In this case, multirate groups have to be defined for each mesh
refinement at minimum computational cost.

4.1. Tang–Warnecke scheme. The coupling in the MR-TW scheme is done by
projecting the solution using the Runge–Kutta step in the adjacent multirate group.
Therefore, with three-stage RK3 base scheme the outer buffer consists of three-stage
coupling groups D(k)(q), q = 1, . . . , 3.

Consider the partition into K multirate groups with time steps 1tk defined by
any partition method. Let m be the number of local time updates from tn

= tn,0 to
tn+1
= tn
+1t = tn,m at which all multirate groups are synchronized. Local times

tn,l
k , 1≤ l ≤ m, are updated at the beginning of the time cycle by

tn,l
k =

{
tn,l−1
k +1tk if tn,l−1

k = tn,l−1,

tn,l−1
k if tn,l−1

k > tn,l−1.
(44)

Then the global time corresponding to the l-th multirate stage is obtained by

tn,l
=min

k
tn,l
k . (45)
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At the beginning of each multirate stage l the initial stage values are given by

W (1)
=

{
Un,l−1

k on D(k),

Un,l∗
j on

⋃K
j=1, j 6=k

(
D( j)
∩
(⋃s

r=1 D(k)(r)
))
.

(46)

Here l∗ ≤ l − 1 is the last multirate stage with tn,l∗
k = tn,l∗

j . The q-th stage value of
the Runge–Kutta scheme on multirate groups D(k) is then computed by

U (q)
k = Un,l−1

k +1tk
q−1∑
r=1

aqr Lk W (r), q = 2, . . . , s, (47)

and coupling values denoted by V (q)
j are computed in the outer buffer of D(k) by

V (q)
j = Un,l∗

j +1tk, j

q−1∑
r=1

aqr L j W (r), (48)

where 1tk, j = tn,l
k − tn,l∗

j and

W (q)
=

{
U (q)

k on D(k),

V (q)
j on

⋃K
j=1, j 6=k

(
D( j)
∩
(⋃s+1−q

r=1 D(k)(r)
))
,

q = 2, . . . , s.

4.2. Liu–Li–Hu linear scheme. The coupling in the MRK-LLH is done by mod-
ifying the latest stage values in cells closest to the multirate interface. The outer
buffer includes only one coupling group Dk(1).

Consider a partition into K multirate groups with time steps1tk and m local time
updates from tn

= tn,0 to tn+1
= tn
+1t = tn,m . Local times tn,l

k , l ∈ {0, . . . ,m−1},
associated with each multirate group D(k) are updated at the end of the l-th stage by

tn,l+1
k =

{
tn,l
k +1tk if tn,l

k +1tk = tn,l+1,

tn,l
k if tn,l

k +1tk > tn,l+1,
(49)

where
tn,l+1

=min
k
(tn,l

k +1tk). (50)

At each multirate stage l for every D(k) with tn,l
k = tn,l the coupling RK stage

values V j are computed in the outer buffer
⋃K

j=1, j 6=k(D
( j)
∩ D(k)(1)) by

V (q)
j =

{∑q
r=1[CT1t j T

−1
1tk C−1

]qr U (r)
j if tn,l

j = tn,l
k ,∑s

r=1[CT1t j H
1tn,l

k, j
T−1
1tk C−1

]qr U (r)
j if tn,l

j < tn,l
k ,

(51)

where 1tn,l
k, j = tn,l

k − tn,l
j , U (r)

j are the RK stage values on D( j) at tn,l
j , and matrices

C, T1t , and H1t are defined by (20), (21), and (31), respectively. Then the time
integration is performed on D(k). There are no additional RK steps in the outer
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buffer, since the coupling values are defined by (51). Therefore, in this algorithm
we avoid additional costly computations of fluxes in the outer buffer.

5. Numerical experiments

All numerical experiments were completed with double precision on a computer
with a four-core Intel i7-4790K CPU. The computational code of the finite volume
engine was written in C++ with OpenMP and compiled using GCC. Tetrahedral
meshes for all 3D problems considered in this work were generated using the open
source software Gmsh version 2.7.1. As was mentioned in Section 4, the MRK3-TW
scheme requires more flux computations while MRK3-LLH uses more coupling
steps. To assess schemes’ efficiency, in our numerical experiments we compared
both CPU time and the total number of flux computations for single-rate RK3
and multirate schemes. Flux computation is the most computationally expensive
operation and for large meshes it takes over 90% of CPU time (94% in the example
on page 83). At the same time, on small meshes with large time-step ratio this
percentage is lower and the speedup of MRK3-LLH compared to the RK3-TW
scheme is diminished with too many coupling steps. Therefore, in some examples
RK3-TW slightly outperforms MRK3-LLH in terms of CPU time.

Example (1D linear advection equation). Consider the linear advection problem

ut + ux = 0, x ∈�= (−1, 1), (52)

u(x, 0)= sin(πx), (53)

with periodic boundary conditions. The computational domain consists of two
subdomains D1 = (−1, 0) with grid size h/2, and D2 = (0, 1) with grid size h. For
the space approximation a finite volume scheme based on a third-order WENO
reconstruction [25] is employed. Convergence results for MRK3-TW and MRK3-
LLH are compared to the ones by the non-MRK SSP RK3 scheme on a uniform
grid (see Table 3).

Example (PEC sphere). Consider the classical scattering problem of a plane wave
at a PEC sphere for which the analytic series solution is known [22; 5]. The
computational domain is represented by a sphere of radius 3 m with a sphere (PEC)
of radius 0.5 m cut out at the origin. The x component of the electric field of the
incident plane wave E I

x is given by the derivative of the Gaussian pulse:

E I
x =−2

t − t0
b2 Ae−(t−t0)2/b2

, (54)

where A = 1.7489× 10−9 V·s
m , b = 1.5× 10−9 s, and t0 = 6× 10−9 s.

The average linear cell size near the PEC surface is 0.0225 m, and on the outer
boundary of the domain it is 0.15 m. The resulting nonuniform mesh has linear
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RK3 MRK3-TW MRK3-LLH
h−1 l2(u) r2(u) l2(u) r2(u) l2(u) r2(u)

100 9.006× 10−6 3.895× 10−3 1.086× 10−5

200 1.126× 10−6 3.00 1.963× 10−3 0.99 1.357× 10−6 3.00
400 1.407× 10−7 3.00 9.863× 10−4 0.99 1.695× 10−7 3.00
800 1.759× 10−8 3.00 4.945× 10−4 1.00 2.118× 10−8 3.00

1 600 2.198× 10−9 3.00 2.477× 10−4 1.00 2.647× 10−9 3.00
3 200 2.751× 10−10 3.00 1.240× 10−4 1.00 3.310× 10−10 3.00
6 400 3.507× 10−11 2.97 6.203× 10−5 1.00 4.170× 10−11 2.99

Table 3. Convergence of RK3 and MRK3 schemes for the linear advection equation with
initial data u(x, 0)= sin(πx) at T = 1. Here r2(u)= log2(l2(u

[h])/ l2(u[h/2])).

P2 partition OP partition

Multirate domains:

   ∆t
min

: 199
  2∆t

min
: 111412

  4∆t
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: 28267
  8∆t
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: 30531
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: 261002

Multirate domains with
∆t*

min 
=0.8∆t

min
:

           ∆t*
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Figure 1. Scattering from PEC sphere: multirate domain partition for the mesh with linear
cells size ratio 1 : 6.667.

cell-size ratio 1 : 6.667, and consists of 431 411 tetrahedra with 14 374 of them
containing a PEC face. Two types of partitions used in our experiments with the
MRK3-TW and MRK3-LLH schemes are shown of Figure 1. The time-domain
solutions for the electric field at a side-scatter observation point by two MRK3
schemes and single-rate RK3 are shown in Figure 2. The maximum errors at four
observation points are shown in Table 4. The error plots in Figure 2 show that the
same accuracy is obtained with the MRK3-LLH-OP scheme as with the single-rate
RK3 method. At the same time, the error of the solution obtained by the MRK3-
TW-OP scheme is much larger. This demonstrates only first-order accuracy of the
MRK3-TW scheme as in 1D analysis. The same conclusions can be drawn from the
errors presented in Table 4. A comparison of numerical efficiency for both multirate
schemes against the single-rate RK3 is shown in Table 5. While both schemes have
faster CPU time than a single-rate scheme, in this example, CPU performance of
the MRK3-LLH scheme is higher due to fewer interface flux computations required.
It should be noted that P2 partition uses the largest time step as 1tg, and in OP
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Figure 2. Scattering from PEC sphere: time-domain solution at side-scatter observation
point (−1.15, 0, 0) using RK3 and MRK3 schemes.

side-scatter side-scatter forward-scatter back-scatter
scheme (1.15, 0, 0) (−1.15, 0, 0) (0, 0, 1.15) (0, 0,−1.15)

RK3 1.1842×10−3 1.1788×10−3 8.2511×10−3 3.1686×10−3

MRK3-TW-P2 2.3026×10−3 3.2627×10−3 1.3442×10−2 5.4663×10−3

MRK3-TW-OP 2.2546×10−3 2.8729×10−3 1.3193×10−2 5.5634×10−3

MRK3-LLH-P2 1.1519×10−3 9.3847×10−4 8.0727×10−3 3.1817×10−3

MRK3-LLH-OP 1.2615×10−3 1.2559×10−3 7.8927×10−3 3.1663×10−3

Table 4. PEC sphere: maxn |Ex (tn)−EAnalytic
x (tn)| at observation points for RK3 and MRK3.

scheme # of 1tg n(LU) n(LU)RK3
n(LU) CPU [ms] CPURK3

CPU

RK3 7 245 9 376 718 085 1 6 498 449 1
MRK3-TW-P2 453 2 325 701 094 4.03 1 893 579 3.43
MRK3-TW-OP 221 2 182 108 032 4.3 1 986 033 3.27
MRK3-LLH-P2 453 2 062 756 791 4.55 1 587 369 4.09
MRK3-LLH-OP 230 1 944 214 380 4.82 1 586 064 4.1

Table 5. PEC sphere: performance of MRK3 schemes compared to single-rate RK3 for
domain partitions shown on Figure 1, here n(LU) is the number of flux operations which
is the most computationally expensive operation.

partition 1tg (time step to synchronize solutions across multirate domains) is twice
as large as the largest time step (see Figure 1). Therefore, the number of 1tg steps
in Table 5 is equivalent to the number of synchronization steps, not the number of
largest time steps.

Example (parallel-plate waveguide). A parallel-plate waveguide is represented by
a cubic domain with two faces parallel to the xy-plane being PEC plates, and two
faces parallel to the zx-plane being PMC plates. A plane-wave excited on the port
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Figure 3. Parallel-plate waveguide: geometry and mesh.

RK3 MRK3-TW MRK3-LLH
# of cells L2 error order L2 error order L2 error order

8 040 6.824139×10−3 1.929949×10−2 6.890073×10−3

64 076 9.177931×10−4 2.89 8.110855×10−3 1.25 9.246888×10−4 2.9
554 668 1.107034×10−4 3.05 4.385090×10−3 0.89 1.112703×10−4 3.05

Table 6. Parallel-plate waveguide: L2 errors at T = lc−1
0 (l = 2 m) using RK3 and MRK3 schemes.

x =−1 and propagating in the x-direction is given by

E in
z = f (t), H in

y =− f (t)
√
ε/µ, E in

x = E in
y = H in

x = H in
z = 0, (55)

where f (t) is defined by the Gaussian pulse

f (t)= e−(t−t0)2/b2
, b = 1.2× 10−9

[s], t0 = c−1
0 [s]. (56)

Experiments are performed on three meshes with fine mesh linear size 1x equal
to 0.025, 0.05, and 0.1 m, and coarse mesh size 21x . An example of problem
geometry and mesh is shown in Figure 3. Convergence results are presented in
Table 6. On each mesh we compute the L2 error at time T = 2c−1

0 by

l2(U(T ))=

[∑N
i=1|Ti |

∑3
j=1

1
2(εrε0(E

j
i )

2
+µrµ0(H

j
i )

2)
]1/2[

ε0
∑N

i=1|Ti |
]1/2 . (57)

In another experiment, an inhomogeneous mesh with linear cell-size ratio 1 : 160
was generated similar to the example from [15]. The plane wave (55) uses the pulse
given as one wavelength of a cosine function

f (t)= 1
2(1+ cos(2πc0(t − t0)))θ(t − ts)θ(te− t), (58)

where t0 = 0.54c−1
0 [s], ts = 1.04c−1

0 [s], te = 2.04c−1
0 [s], and θ(t) is the Heaviside

function. A schematic representation of the geometry and resulting mesh are shown
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Figure 4. Parallel-plate waveguide: inhomogeneous mesh with linear cell-size ratio 1 : 160.

scheme # of 1tg n(LU) n(LU)RK3
n(LU) CPU [ms] CPURK3

CPU L2 error

RK3 51 978 13 180 477 284 1 9 130 297 1 5.7813×10−3

MRK3-TW-P2 204 232 562 448 56.68 296 687 30.77 1.3733×10−2

MRK3-TW-OP 136 189 863 344 69.42 271 379 33.64 1.2976×10−2

MRK3-LLH-P2 204 231 063 048 57.04 378 350 24.13 5.6292×10−3

MRK3-LLH-OP 136 173 453 040 75.99 366 928 24.88 5.7684×10−3

Table 7. Parallel-plate waveguide with mesh-size ratio 1 : 160: performance of MRK3
schemes compared to single-rate RK3.

in Figure 4. The region defined by a sphere with radius R1 has the smallest elements
with linear size R1/1.6. Area between spheres with radii R1 and R2 provide gradual
transition to the coarsest mesh with average linear cell size 0.1. The resulting mesh
has linear cell-size ratio 1 : 160 and contains 84 526 tetrahedra with fewer than 200
of elements of the smallest size. Using the P2 partition, the computational domain
is divided into 9 multirate groups with the maximum time-step ratio 1 : 256. In
this partition 0.12% of elements belong to multirate group with the smallest time
step 1tmin and 86% to the group with time step 1281tmin. OP partition divides the
computational domain into 10 multirate groups with time step ratio 1 :192 and global
synchronization time step 3841t∗min. In this partition 0.14% of elementsbelong to the
multirate group with the smallest time step 1t∗min and 95.6% to the group with time
step 1921t∗min. Numerical speedup achieved by the MRK3-TW and MRK3-LLH
schemes is presented in Table 7. The results demonstrate greater speedup than in
[15] even with the third-order scheme where coupling is more expensive due to the
flexibility in time-step ratio. Speedup achieved by MRK3-TW is noticeably higher
in this example. It can be explained by the fact that this test case uses a small mesh
and the weight of additional flux computations needed for coupling in MRK3-TW
turns out to be less costly than higher-order coupling used in MRK3-LLH.



MRK3 FOR MAXWELL’S EQUATIONS 83

Observation point  
  

 

 

z y
R b

x2r1
2r2

lp

R=12.5 mmb=6.5 mmr1=0.63 mmr2=2.25 mmlp=6.5 mm

Figure 5. DRA: geometry and mesh.

Example (probe-fed hemispherical DRA). To evaluate the robustness of multirate
schemes on a practical EM problem, we use an example of the coaxial probe-fed
hemispherical DRA experiment from [6]. That work contained a comparison of
a second-order finite volume time domain scheme against a simulation using the
commercial software HFSS for a large dielectric hemisphere antenna withsmall
feed coaxial cable. The DRA including all required geometrical parameters is
presented in Figure 5. The outer boundary of the computational domain is an
ellipsoid with absorbing boundary conditions from (1). Computational results are
compared with the ones presented in [6] for the same set of parameters. As in
[6] an S11 parameter of the antenna is computed. Baumann [6] used the entire
port section for the original way of reflection coefficient computations. Because
of the third-order accuracy we are able to compute the return loss from a single
observation point. To do that as in [6] we impose an analytic field onto the coaxial
cable entrance port with wide-enough Gaussian (56) to cover the desirable fre-
quency domain. Then we register the field Epoint

2 (t) at one observation point with
coordinates (0.00144, 0.0065,−0.00475), and compute the analytic field Ecoax

2 (t)
in the coaxial cable in the same point. Then the reflected coefficient is computed at
several frequency points using

S11(F)= 20 log10
| f Ecoax

z (F)− f Epoint
z (F)|

| f Ecoax
z (F)|

[dB], (59)

where f Ez(F)=
∫ T

0 Ez(t) exp(−2π i Ft) dt is computed for a set of frequencies
3 GHz ≤ F ≤ 6 GHz. Our third-order single point result is closer to the curve
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Figure 6. Return loss DRA S11 coefficient.

scheme # of 1tg n(LU) n(LU)RK3
n(LU) CPU [s] CPURK3

CPU
‖S11−SRK3

11 ‖2

‖SRK3
11 ‖2

RK3 170 847 97 792 310 259 1 65 301 1 0
MRK3-TW-P2 2 670 26 009 562 030 3.76 18 965 3.44 1.48×10−2

MRK3-TW-OP 1 810 24 000 306 780 4.07 18 551 3.52 2.01×10−2

MRK3-LLH-P2 2 670 24 471 455 130 4.00 17 150 3.8 1.29×10−5

MRK3-LLH-OP 2 171 21 515 239 590 4.55 16 834 3.88 1.97×10−5

Table 8. DRA: performance of MRK3 schemes compared to single-rate RK3, where
n(LU) is the number of flux operations. The last column shows the relative difference of
SRK3

11 computed with Runge–Kutta to S11 obtained from MRK3 schemes.

obtained with HFSS (Figure 6). Higher-order schemes conduct more high-frequency
oscillations, which is visible for higher than 5 GHz reflections. Performance evalua-
tion of our implementation is shown in Table 8. The simulation speedup achieved
in our experiments using a third-order scheme is similar to the one reported in [15]
for the same problem but using a different mesh and second-order scheme.

6. Summary

In this paper two multirate schemes with SSP RK3 base method are tested in
application to Maxwell’s equations on unstructured tetrahedral meshes. The order
conditions for MPRK schemes on linear problems show that the third-order exten-
sion of the scheme proposed in [38] has only first-order accurate coupling, while the
scheme developed in [27] is third-order accurate for linear problems with three-stage
third-order Runge–Kutta methods. For 3D simulations, both schemes are flexible in
terms of local time-step partition allowing higher speedup than previously reported
in the literature even for more expensive third-order approximation. Solution error
comparisons confirm that the analysis based on order conditions is valid in 3D
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simulations. Moreover, our numerical results show that arbitrary time-step ratio does
not compromise the accuracy of simulations. Future work may include extending
the implementation of multirate schemes to higher order for 3D simulations.

Acknowledgments

Kotovshchikova was supported by an NSERC postgraduate scholarship, while Lui
was supported by an NSERC Discovery grant.

References

[1] P. Albrecht, The Runge–Kutta theory in a nutshell, SIAM J. Numer. Anal. 33 (1996), no. 5,
1712–1735. MR Zbl

[2] J. F. Andrus, Numerical solution of systems of ordinary differential equations separated into
subsystems, SIAM J. Numer. Anal. 16 (1979), no. 4, 605–611. MR Zbl

[3] , Stability of a multi-rate method for numerical integration of ODEs, Comput. Math.
Appl. 25 (1993), no. 2, 3–14. MR Zbl

[4] L. D. Angulo, J. Alvarez, F. L. Teixeira, M. F. Pantoja, and S. G. Garcia, Causal-path local
time-stepping in the discontinuous Galerkin method for Maxwell’s equations, J. Comput. Phys.
256 (2014), 678–695. MR Zbl

[5] C. A. Balanis, Advanced engineering electromagnetics, Wiley, 1989.

[6] D. Baumann, A 3-d numerical field solver based on the finite-volume time-domain method, Ph.D.
thesis, ETH Zürich, 2006.

[7] P. Bonnet, X. Ferrieres, F. Issac, F. Paladian, J. Grando, J. C. Alliot, and J. Fontaine, Numerical
modeling of scattering problems using a time domain finite volume method, J. Electromagnet.
Wave. 11 (1997), no. 8, 1165–1189.

[8] F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the
1-D wave equation, I: Construction, Numer. Math. 95 (2003), no. 2, 197–221. MR Zbl

[9] , Conservative space-time mesh refinement methods for the FDTD solution of Maxwell’s
equations, J. Comput. Phys. 211 (2006), no. 1, 9–35. MR Zbl

[10] E. M. Constantinescu and A. Sandu, Multirate timestepping methods for hyperbolic conservation
laws, J. Sci. Comput. 33 (2007), no. 3, 239–278. MR Zbl

[11] C. Dawson and R. Kirby, High resolution schemes for conservation laws with locally varying
time steps, SIAM J. Sci. Comput. 22 (2000), no. 6, 2256–2281. MR Zbl

[12] S. Descombes, S. Lanteri, and L. Moya, Locally implicit time integration strategies in a discon-
tinuous Galerkin method for Maxwell’s equations, J. Sci. Comput. 56 (2013), no. 1, 190–218.
MR Zbl

[13] J. Diaz and M. J. Grote, Energy conserving explicit local time stepping for second-order wave
equations, SIAM J. Sci. Comput. 31 (2009), no. 3, 1985–2014. MR Zbl

[14] A. Ezziani and P. Joly, Local time stepping and discontinuous Galerkin methods for symmetric
first order hyperbolic systems, J. Comput. Appl. Math. 234 (2010), no. 6, 1886–1895. MR Zbl

[15] C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, A generalized local time-step
scheme for efficient FVTD simulations in strongly inhomogeneous meshes, IEEE T. Microw.
Theory 52 (2004), no. 3, 1067–1076.

http://dx.doi.org/10.1137/S0036142994260872
http://msp.org/idx/mr/1411846
http://msp.org/idx/zbl/0858.65074
http://dx.doi.org/10.1137/0716045
http://dx.doi.org/10.1137/0716045
http://msp.org/idx/mr/537274
http://msp.org/idx/zbl/0421.65044
http://dx.doi.org/10.1016/0898-1221(93)90218-K
http://msp.org/idx/mr/1192678
http://msp.org/idx/zbl/0771.65037
http://dx.doi.org/10.1016/j.jcp.2013.09.010
http://dx.doi.org/10.1016/j.jcp.2013.09.010
http://msp.org/idx/mr/3117429
http://msp.org/idx/zbl/1349.78061
http://dx.doi.org/10.3929/ethz-a-005215167
http://dx.doi.org/10.1163/156939397X01070
http://dx.doi.org/10.1163/156939397X01070
http://dx.doi.org/10.1007/s00211-002-0446-5
http://dx.doi.org/10.1007/s00211-002-0446-5
http://msp.org/idx/mr/2001076
http://msp.org/idx/zbl/1048.65089
http://dx.doi.org/10.1016/j.jcp.2005.03.035
http://dx.doi.org/10.1016/j.jcp.2005.03.035
http://msp.org/idx/mr/2168868
http://msp.org/idx/zbl/1107.78015
http://dx.doi.org/10.1007/s10915-007-9151-y
http://dx.doi.org/10.1007/s10915-007-9151-y
http://msp.org/idx/mr/2357410
http://msp.org/idx/zbl/1127.76033
http://dx.doi.org/10.1137/S1064827500367737
http://dx.doi.org/10.1137/S1064827500367737
http://msp.org/idx/mr/1856633
http://msp.org/idx/zbl/0980.35015
http://dx.doi.org/10.1007/s10915-012-9669-5
http://dx.doi.org/10.1007/s10915-012-9669-5
http://msp.org/idx/mr/3049948
http://msp.org/idx/zbl/1266.78030
http://dx.doi.org/10.1137/070709414
http://dx.doi.org/10.1137/070709414
http://msp.org/idx/mr/2516141
http://msp.org/idx/zbl/1195.65131
http://dx.doi.org/10.1016/j.cam.2009.08.094
http://dx.doi.org/10.1016/j.cam.2009.08.094
http://msp.org/idx/mr/2644184
http://msp.org/idx/zbl/1407.65183
http://dx.doi.org/10.1109/TMTT.2004.823595
http://dx.doi.org/10.1109/TMTT.2004.823595


86 MARINA KOTOVSHCHIKOVA, DMITRY K. FIRSOV AND SHIU HONG LUI

[16] C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT 24 (1984), no. 4, 484–502.
MR Zbl

[17] N. Goedel, S. Schomann, T. Warburton, and M. Clemens, Local timestepping discontinuous
Galerkin methods for electromagnetic RF field problems, 3rd European Conference on Antennas
and Propagation, IEEE, 2009, pp. 2149–2153.

[18] M. J. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell’s equations, J.
Comput. Appl. Math. 234 (2010), no. 12, 3283–3302. MR Zbl

[19] , High-order explicit local time-stepping methods for damped wave equations, J. Comput.
Appl. Math. 239 (2013), 270–289. MR Zbl

[20] M. Günther, A. Kværnø, and P. Rentrop, Multirate partitioned Runge–Kutta methods, BIT 41
(2001), no. 3, 504–514. MR Zbl

[21] E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations,
Numer. Math. 36 (1981), no. 4, 431–445. MR Zbl

[22] R. F. Harrington, Time-harmonic electromagnetic fields, McGraw-Hill, 1961.

[23] W. Hundsdorfer, A. Mozartova, and V. Savcenco, Monotonicity conditions for multirate and
partitioned explicit Runge–Kutta schemes, Recent developments in the numerics of nonlinear
hyperbolic conservation laws (R. Ansorge, H. Bijl, A. Meister, and T. Sonar, eds.), Notes Numer.
Fluid Mech. Multidiscip. Des., no. 120, Springer, 2013, pp. 177–195. MR Zbl

[24] Z. a. Jackiewicz and R. Vermiglio, Order conditions for partitioned Runge–Kutta methods, Appl.
Math. 45 (2000), no. 4, 301–316. MR Zbl

[25] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys.
126 (1996), no. 1, 202–228. MR Zbl

[26] M. Kotovshchikova, D. K. Firsov, and S. H. Lui, A third order finite volume WENO scheme for
Maxwell’s equations on tetrahedral meshes, Commun. Appl. Math. Comput. Sci. 13 (2018),
no. 1, 87–106. MR Zbl

[27] L. Liu, X. Li, and F. Q. Hu, Nonuniform time-step Runge–Kutta discontinuous Galerkin method
for computational aeroacoustics, J. Comput. Phys. 229 (2010), no. 19, 6874–6897. MR Zbl

[28] N. Manzanares-Filho, C. A. A. Moino, and A. B. Jorge, An improved controlled random
search algorithm for inverse airfoil cascade design, 6th World Congress on Structural and
Multidisciplinary Optimization (J. Herskovits, S. Mazorche, and A. Canelas, eds.), COPPE,
2005.

[29] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, Dissipative terms and local time-stepping
improvements in a spatial high order discontinuous Galerkin scheme for the time-domain
Maxwell’s equations, J. Comput. Phys. 227 (2008), no. 14, 6795–6820. MR Zbl

[30] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with locally
varying time and space grids, Math. Comp. 41 (1983), no. 164, 321–336. MR Zbl

[31] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave
propagation problems, M2AN Math. Model. Numer. Anal. 40 (2006), no. 5, 815–841. MR Zbl

[32] J. R. Rice, Split Runge–Kutta method for simultaneous equations, J. Res. Nat. Bur. Standards
64B (1960), 151–170. MR Zbl

[33] A. Sandu and E. M. Constantinescu, Multirate explicit Adams methods for time integration of
conservation laws, J. Sci. Comput. 38 (2009), no. 2, 229–249. MR Zbl

[34] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke, Multirate Runge–Kutta schemes for advection
equations, J. Comput. Appl. Math. 226 (2009), no. 2, 345–357. MR Zbl

http://dx.doi.org/10.1007/BF01934907
http://msp.org/idx/mr/764821
http://msp.org/idx/zbl/0555.65046
https://ieeexplore.ieee.org/document/5068043
https://ieeexplore.ieee.org/document/5068043
http://dx.doi.org/10.1016/j.cam.2010.04.028
http://msp.org/idx/mr/2665386
http://msp.org/idx/zbl/1210.78026
http://dx.doi.org/10.1016/j.cam.2012.09.046
http://msp.org/idx/mr/2991972
http://msp.org/idx/zbl/1255.65174
http://dx.doi.org/10.1023/A:1021967112503
http://msp.org/idx/mr/1854271
http://msp.org/idx/zbl/0990.65081
http://dx.doi.org/10.1007/BF01395956
http://msp.org/idx/mr/614858
http://msp.org/idx/zbl/0462.65049
http://dx.doi.org/10.1007/978-3-642-33221-0_11
http://dx.doi.org/10.1007/978-3-642-33221-0_11
http://msp.org/idx/mr/3013110
http://msp.org/idx/zbl/1263.65089
http://dx.doi.org/10.1023/A:1022323529349
http://msp.org/idx/mr/1763174
http://msp.org/idx/zbl/1058.65069
http://dx.doi.org/10.1006/jcph.1996.0130
http://msp.org/idx/mr/1391627
http://msp.org/idx/zbl/0877.65065
http://dx.doi.org/10.2140/camcos.2018.13.87
http://dx.doi.org/10.2140/camcos.2018.13.87
http://msp.org/idx/mr/3778321
http://msp.org/idx/zbl/1386.78023
http://dx.doi.org/10.1016/j.jcp.2010.05.028
http://dx.doi.org/10.1016/j.jcp.2010.05.028
http://msp.org/idx/mr/2677756
http://msp.org/idx/zbl/1425.76224
http://dx.doi.org/10.1016/j.jcp.2008.03.032
http://dx.doi.org/10.1016/j.jcp.2008.03.032
http://dx.doi.org/10.1016/j.jcp.2008.03.032
http://msp.org/idx/mr/2435431
http://msp.org/idx/zbl/1144.78330
http://dx.doi.org/10.2307/2007679
http://dx.doi.org/10.2307/2007679
http://msp.org/idx/mr/717689
http://msp.org/idx/zbl/0592.65068
http://dx.doi.org/10.1051/m2an:2006035
http://dx.doi.org/10.1051/m2an:2006035
http://msp.org/idx/mr/2293248
http://msp.org/idx/zbl/1121.78014
http://dx.doi.org/10.6028/jres.064B.018
http://msp.org/idx/mr/0129136
http://msp.org/idx/zbl/0091.29202
http://dx.doi.org/10.1007/s10915-008-9235-3
http://dx.doi.org/10.1007/s10915-008-9235-3
http://msp.org/idx/mr/2471015
http://msp.org/idx/zbl/1203.65112
http://dx.doi.org/10.1016/j.cam.2008.08.009
http://dx.doi.org/10.1016/j.cam.2008.08.009
http://msp.org/idx/mr/2501650
http://msp.org/idx/zbl/1167.65428


MRK3 FOR MAXWELL’S EQUATIONS 87

[35] B. Seny, J. Lambrechts, R. Comblen, V. Legat, and J.-F. Remacle, Multirate time stepping for
accelerating explicit discontinuous Galerkin computations with application to geophysical flows,
Internat. J. Numer. Methods Fluids 71 (2013), no. 1, 41–64. MR Zbl

[36] G. R. Shubin and J. B. Bell, A modified equation approach to constructing fourth-order methods
for acoustic wave propagation, SIAM J. Sci. Statist. Comput. 8 (1987), no. 2, 135–151. MR
Zbl

[37] J. L. Steger and R. F. Warming, Flux vector splitting of the inviscid gasdynamic equations with
application to finite-difference methods, J. Comput. Phys. 40 (1981), no. 2, 263–293. MR Zbl

[38] H.-z. Tang and G. Warnecke, High resolution schemes for conservation laws and convection-
diffusion equations with varying time and space grids, J. Comput. Math. 24 (2006), no. 2,
121–140. MR Zbl

[39] A. Taube, M. Dumbser, C.-D. Munz, and R. Schneider, A high-order discontinuous Galerkin
method with time-accurate local time stepping for the Maxwell equations, Int. J. Numer. Model.
El. 22 (2009), no. 1, 77–103. Zbl

[40] Y.-T. Zhang and C.-W. Shu, Third order WENO scheme on three dimensional tetrahedral meshes,
Commun. Comput. Phys. 5 (2009), no. 2–4, 836–848. MR Zbl

Received October 28, 2019. Revised February 25, 2020.

MARINA KOTOVSHCHIKOVA: m.a.kotovshchikova@gmail.com
San Jose, CA United States

DMITRY K. FIRSOV: d.k.firsov@gmail.com
San Jose, CA, United States

SHIU HONG LUI: luish@cc.umanitoba.ca
Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada

mathematical sciences publishers msp

http://dx.doi.org/10.1002/fld.3646
http://dx.doi.org/10.1002/fld.3646
http://msp.org/idx/mr/3001214
http://msp.org/idx/zbl/07168553
http://dx.doi.org/10.1137/0908026
http://dx.doi.org/10.1137/0908026
http://msp.org/idx/mr/879407
http://msp.org/idx/zbl/0611.76091
http://dx.doi.org/10.1016/0021-9991(81)90210-2
http://dx.doi.org/10.1016/0021-9991(81)90210-2
http://msp.org/idx/mr/617098
http://msp.org/idx/zbl/0468.76066
https://www.jstor.org/stable/43694072
https://www.jstor.org/stable/43694072
http://msp.org/idx/mr/2204451
http://msp.org/idx/zbl/1100.65071
http://dx.doi.org/10.1002/jnm.700
http://dx.doi.org/10.1002/jnm.700
http://msp.org/idx/zbl/1156.78012
https://global-sci.org/intro/article_detail/cicp/7766.html
http://msp.org/idx/mr/2513718
http://msp.org/idx/zbl/1364.65177
mailto:m.a.kotovshchikova@gmail.com
mailto:d.k.firsov@gmail.com
mailto:luish@cc.umanitoba.ca
http://msp.org



	1. Introduction
	2. Finite volume scheme for Maxwell's equations
	3. Multirate Runge–Kutta methods in 1D
	4. MRK scheme in 3D
	4.1. Tang–Warnecke scheme
	4.2. Liu–Li–Hu linear scheme

	5. Numerical experiments
	6. Summary
	Acknowledgments
	References

