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1. Introduction

It is well known that the classical Newton’s method to solve a nonlinear system of equations converges quadratically
if the initial guess is close enough to a solution. One drawback of this theory is that the solution is unknown a priori.
Kantorovich'’s version of this theory (see, for instance, [1]) only makes assumptions in a region about the initial point and
the existence of a solution and the rate of local convergence are consequences of the theory.

Another disadvantage of the classical Newton’s method is that the Jacobian matrix must be formed at every iteration.
In practice, the matrix may not be available analytically or its formation may be very expensive. Quasi-Newton methods
are designed so that it is relatively inexpensive to compute an approximation to the Jacobian matrix at every iteration.
The first and most important contribution is due to Broyden [2], where the matrix approximation from one iteration to
the next one can be calculated by a rank-one update. Assuming existence of a root, local convergence of the basic method
as well as global convergence of a version with line search are known. See, for instance [3] or [4]. In the first part of
this paper, we give a local convergence theory of the basic Broyden’s method where all assumptions are about the initial
point. The existence of a solution and superlinear convergence of the iteration are outcomes of the theory.

There are other approximations to Newton’s method, for instance, inexact Newton’s methods. See [5-8] and references
therein.
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For the problem of unconstrained minimization of a function f, a popular quasi-Newton method is the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm. While the approximate Jacobian of the Broyden’s method applied to solve the
nonlinear system Vf = O is, in general, non-symmetric, the corresponding approximation of the BFGS algorithm is
symmetric positive definite (SPD) if f is uniformly convex. Its update is a rank-2 matrix. Again, local convergence of
the basic method and global convergence of a version with line search have been shown. See, for instance [3] or [4]. In
the second part of this paper, we show existence of a solution and superlinear convergence of the basic BFGS algorithm
assuming only conditions in a neighbourhood of the initial point.

The main thrust of this article is to give superlinear convergence of Broyden’s method and BFGS algorithm where
all assumptions are made about some region about the initial iterate and hence are verifiable. We shall refer to this as
Kantorovich-type assumptions. Existence of the root or minimizer and the superlinear convergence are deductions of
the theory. Following [1], we try to construct a theory with as few constants as possible.

In the remainder of this introductory section, an outline of the paper is given. We shall give some notations and recall
some well known useful results. In section two, as a warmup, we give a simple local convergence theory for the Chord’s
method for a system of nonlinear equations using Kantorovich-type hypotheses. In section three, superlinear convergence
of Broyden’s method is given using Kantorovich-type assumptions. This is followed by an analogous theory for the BFGS
algorithm. For the latter, we introduce a norm which depends on the iteration number to estimate the difference between
inverses of the approximate and exact Jacobians. This idea may be applicable in other situations. In the final section, we
summarize and offer some open problems.

Throughout the article, || - || denotes the Euclidean vector or matrix norm and B,(x) denotes the open ball of radius

r with center at x. Recall that the Frobenius norm of any N x N matrix X = (xl-]-) is defined as X2 = i X%, and

XN < IXllF < \/IV||X||. Assume {x,} € RN converges to x*. Then the sequence {x,} converges g-superlinearly to x* if and
only if either x, = x* for all sufficiently large n or x, # x* for all large n and
Ixpn — x*1
n—oo ||xXp — X*||
Henceforth, this will be referred to simply as superlinear convergence. We collect together some lemmas which will be
used later.

Lemma 1.1. Let A, B be SPD matrices. Then
IAB|* < ||A® B||.

Proof. Define the inner product (x, y) = xTA~'y. It is well known that AB is self adjoint with respect to this inner product
and is positive definite. Let Apax(M) be the maximum eigenvalue of matrix M. By the variational characterization of the
maximum eigenvalue of a self-adjoint operator,

ABy, ;]
Amax(AB) = max (ABy. y) = max y

a .
yA0 (y,y)  y20 yTATly
Since Amax(A’B?) < ||A%B?||, it follows that

IAB||> = ||AB(AB)"|| = || AB*A||
xTAB?Ax g2
= max ~ 22X ax Y2 Imax(A?B%) < |A’B?||. O
x#£0  XTx y#0 yTA—2y

The next three lemmas are well known. They can be found, for instance, in [9].
Lemma 1.2. Let A be a square matrix and ||l — A|| < 1. Then A is invertible and

1
A7) < ————.
1— |1 —=Al

Lemma 1.3. Let u, v be vectors so that uTv # 0. Then

ol
luTv|

uv’
uTv

Lemma 14. Let u, v be non-zero vectors so that |[u — v|| < A|lu|| for some A € (0, 1). Then

v \°
1— <22,
llullvl
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Lemma 1.5 (See [3], Lemma 4.1.12). Let 2 be an open set in RN and F : 2 — RN be C1(£2). Suppose there is some positive
constant L such that

IF'(u) = F'(v)Il < Lllu— vl u,ve .
Then

IFG) ~ Fo) = FOo)u— )l < = Ju— ol wve .

2. Chord’s method

The Chord’s method to solve the nonlinear system F(x) = O is given by the iteration
Xni1 =X —AT'F(X,), n >0,

where X is an initial guess and the Jacobian A = F’(xo) is invertible. The Chord’s method is Newton’s iteration except
that the Jacobian is fixed at A for all n. This is an alternative to Newton’s method because the Jacobian is formed only
once in the beginning. The drawback is that the convergence is only linear. Below is a local convergence theory using
Kantorovich-type assumptions.

Theorem 2.1. Let 2 be an open set in RN and F : 2 — RN be continuously differentiable on 2. Given xo € £2. Suppose
A = F'(xg) is non-singular. Assume for some r € (0, 1) that B.(xo) C 2, ||A™'F(xo)|| < (1 —r)r and

IAI(F'(v) = F'(w))ll < llv = wll, v, w € Bi(xo).

Let {x,} be the iterates of the Chord’s method. Then x, — x* € B,(xp), where F(x*) = 0. Let e, = x, — x*. Then
lleall < ™1, n > 0. Furthermore, x* is the unique zero of F in B.(xp).

Proof. Let s, = X1 — X,. We claim by induction that x,.; € B.(xo) and ||s,|| < (1 —r)r"*!, ¥n > 0.

The base case n = 0 holds trivially since s = —A~'F(xo) and so by hypothesis, ||So]| < (1 — r)r < r. This also shows
that x; € B:(Xp). Assume that the claims hold for n — 1. We show that they also hold for n.

By Taylor’s Theorem, there is some & along the line joining x, and x,_; so that F(x,) — F(x,_1) = F'(§)s,_1. By the
induction hypothesis,

lIsall = IA™"F(xa)ll = [|A"" (F(Xn) = F(Xn—1)) — Sn_1]
< [I(AT'F'(&) = I)spall = A (F'(§) — F'(x0))sn1ll
< [IE = X0l (1 = )" < (1 —r)r™*h
Since Xp41 — X = Z;:o sj, it follows that [|x,11 — Xol| < Z};O(] — 1)t < r, or x,41 € B:(x). For any non-negative p, we
have Xpipi1 — Xn = Z]";f sj, and so

n+p

PXnspin = Xall < (1=1) Y PH <™,
j=n

This implies that {x,} is a Cauchy sequence and so it must converge to some x* € B;(xg). Also, taking p — oo,
leall <™.

Consequently, A~'F(x,) = —s, — 0. This shows that F(x*) = 0.
Let X be any zero of F in B,(x). Define &, = x, —X. We show ||&,]| < r"*! by induction. The base case is trivial. Suppose
the claim is true for n. There is some & in between x, and X so that F(x,) — F(X) = F'(§)(x, — X). Then

én+1 = Xn4+1 — x= Xn _AilF(Xn) +A71F(52) —-X= én - AilF/(S)én'
Therefore

lénsall < A7 (F'(x0) — F'(E)) I ll&nll
< llx — & r" < "R

As a result,
X — &I < X" = Xall + % — &I < 25" — 0.

Hence x* =x. O
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3. Broyden’s method

Let £2 be an open set in RN. Given a smooth F : £2 — R", the problem is to find x* € £2 so that F(x*) = 0. A classical
method to solve this problem is Newton’s method: X171 = X, — F'(x;)"'F(x,), n > 0 for a given Xy. The formation
of the Jacobian F’(x,) may be computationally intensive, or it may not be available analytically. Broyden [2] devised an
approximate Jacobian which can be calculated from the approximate Jacobian of the previous iteration by a rank-one
update. Given xo € §2 and an invertible initial approximate Jacobian Ay, Broyden’s method is

Xn+1 = Xp + Sn, Sn = _A,TlF(Xn), n>o,
F(Xpg1)s!
Ans1 = An + (le)"
lIsnll

Using classical assumptions (existence of a solution x* and bounds on F and F’ in a neighbourhood of x*), superlinear
convergence and global convergence of the method with line search are known. See, for instance, [3] or [4].

Since x* is not known a priori, the assumptions cannot be checked in practice. The purpose of this section is to give a
superlinear convergence of Broyden’s method using Kantorovich-type assumptions.

We are now ready to show local convergence of the basic Broyden's method (without line search), which will be
followed by a proof of superlinear convergence. Our technique of proof combines the elegant Newton-Kantorovich theory
with only one constant (Theorem 7.7-5 in [1]) and the local convergence of Broyden’s method of [3]. Our theory will
also contain only one constant (r). Note that [10] has shown a local Kantorovich-type convergence result, but without
superlinear convergence. Following the proof of the theorem, we justify via an example the strength of the assumptions.

Theorem 3.1. Let 2 be openin RN, F: 2 — RN, F € C1(2), xg € £2 and Ay be invertible. For some 0 < r < 1/2 assume
B:(x0) C §2 and

IF'(%0)™'F(xo)ll < &7, (3.1)
IF o) Fa - Fonl = T2 v e gye)
IT = F'(x0)"'Aoll < dr, (32)

where &, n and d are positive constants dependent on r (to be defined later). Then the Broyden's iteration {x,} is well defined
and exactly one of the following cases holds,

(i) F(x,) = 0 for some n > 0.

(ii) Broyden’s iteration converges to a unique zero of F in B.(xq).

Proof. Define G(y) = F'(xo)"'F(y). By this definition, F(x*) = 0 if and only if G(x*) = 0, zeros of F are zeros of G and
also G'(y) = F'(xo)"'F'(y), G is differentiable as F is. Define

B() = F/(Xo)_lA(), Yo = Xo,
Yn+1 =Yn + bn, th = _Br:lG(YH)s n=>0,
Gl tT
Basr = By + S0t
lltnl]

Assume F(x,) # 0 for all n > 0. First we show by induction that y, = x, and B, = F'(xo)~'A, for all n > 0. The basic step
is true obviously, yo = xo and By = F'(xo)"'Ay by using definition. Let x, = y, and B, = F/(xy)"'A, for some positive
integer n, then we need to show X,.1 = ¥n4q and B, = F'(x9)~'An41. Notice that:

ta = —B, 'G(xa) = —(F'(x0)"'An) " 'F'(x0)"'F(xn) = —A, 'F(xq) = 5,
and also yp41 = Yn + th = Xn + Sy = X411 By definition of B, we get:
G(Xn 1)ty F'(X0)™'F(Xny1)s;

NIt 12 lIsnll?

) = F'(X0) ' Ans1.

Byi1 = B+ =F(xo) A +

F(Xn41)s)
lIsnll2
Furthermore, by using assumptions of the theorem, it is easy to show that ||G(xo)|| < £r% and
_nllu—v]

- r
We have G'(xo) = F'(xg)"'F'(xo) = I and for u € B,(xo),
nlixo — ull
—_— <

r

= F/(Xo)il(An +
I1G'(w) — G'(w)l

, u, v € B(xg).

IT = Gl = 16'(x0) — G'(w)l| <
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If we assume 5 < 1, then by using Lemma 1.2, G'(u) is invertible and

1 1
IGw)|l < < . (3.3)
1= 1=l = _ nlxo —ull

r
(Note that all additional assumptions on constants such as n < 1 are summarized at the beginning of Section 3.1)
Also, from Lemma 1.5,

nllu — v]?

, u, v € By(Xo). (3.4)
2r

IG(u) = G(v) = G'(v)(u — V)| <

Claim 1. There are some positive constants «, ;v and B dependent on r (to be defined later), such that for n > 0,

(i) 1Xn — Xoll < (1 —1");
(i) G(xa)ll < & ™%
(iii) 1IG'(xn) — Bull < ar;

(iv) G(xn) is invertible and |G (x,)" 1|l < w;

(v) By is invertible and ||B;'|| < B;

(vi) lIsnll < ™2,

The proof of this claim is by mathematical induction. The basic step for Claim 1(i) and (ii) is trivial. By definition of By,
it is invertible thus sy is well defined and x; exists. Also ||G'(xg) — Bo|l = ||l — F'(xo)"'Ag|| < dr < ar, if we choose « such
that d < «. By assumption G'(xg) = I, therefore ||G'(xo)~!|| < w if & > 1. In addition |[I — By|| = ||I — F'(xo)™'Ao|| < dr. If
we assume dr < 1, then ||I — By|| < 1 and by using Lemma 1.2

1
< .
Il —Bo|l| = 1—dr

Bl <
185" < —

1
So by assuming 8 > ; , we have [|B;'|| < B. Also

dr
lIsoll = Il — By 'G(xo)ll < IIBy ' lIG(x0)l| < BET* < 12,

by assuming B¢ < 1. Next we assume all of the statements are true for some integer n > 1, we will show they hold for

n+ 1.
For proving the induction step for Claim 1(i), since B, is invertible by hypothesis of induction, x,, 1 exists and

Xne1 — Xoll < X1 — Xall + 11X0 — Xo|
< M2 4 r1=r=r(1—r"(1—r)) <r(1—r"),

since r < 1/2. Thus ||x,11 — Xo|| < r(1 — r"*1) < r, which establishes Claim 1(i).
For proving the induction step for Claim 1(ii), since G(x,) = —B,sy, use (3.4) and induction hypothesis to obtain

Gxns-1) Il = 1G(Xnt1) — G(Xn) — G'(Xn)sn + (G'(Xn) — Ba)sall

< 1G(Xp41) — G(xn) — G'(Xn)sull + I(G'(Xn) — Bn)sl
nlisall? nlisall
< ——— +arlsll = Isall(—— +ar) (3.5)
2r 2r
n+2 nrit? n+3 n+3
<r (72r +oar) <" (n+a) <EMT

if we assume 7 4+ o < £. Then ||G(x,+1)|| < & r"*3, as we need for Claim 1(ii).
To prove Claim 1(iii), observe that
G(Xp41 )55
lIsn 112
 Glxat1)sy
lIsnll?

”G/(Xn—H) - Bn+l ”

HG’(xn+1) + G'(xn) — G'(%y) — By —

(3.6)

IA

G (Xn41) = G'(xn)ll + “G'(Xn) — By

Consider the second term of this inequality:
G(Xn41 )Sg , (G(xn+1) — G(xn) + G(xn ))55
S = G(%n) — By — -
lIsnll lIsnll
G(Xn+1) — G(Xn))SE Bpsys?
lIsn 2 lIsn 2
5

G'(%n) — By —

= G/(Xn)_Bn - (
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SuS! Bpsnst

lIsnll? lIsnll?

1 spsT
— Glx)— Bu + / (G’(xn) —G((1 = % + B )) "
0

lIsnll?
1 T T
SpS Bpsis
—f G (%) dt + ——7
0 lIsnll lIsall

T
S SpS
= (G'(xn) = Ba)(I — ”””2)+/ [G') = G (T = Ot + )l =
11 ﬂ
Therefore:
G(Xnt1)s) lIsallllsk I
G(%n) — By — — 1 < |G (xn) — Bl - / IG'(xa) = G'( (1 = )y + a1 )| ———1= dt
lIsnll IISnII lIsnll
xp — [(1 —t)x, tx
g ||c'(xn>—Bn||+/ 1% = [0 = % + el
0 r

'IIISnII

1
tnlisal
s||c/(xn)—Bn||+f —r" dt < [|G'(xy) — Bl +
0

Substitute this in inequality (3.6) we get:

/ nlisall
G (Xn41) — Bagall < G (xng1) — G (X))l + IG'(X%n) — Ball + 2:
s s
< Misal nlisall 4G (%) — Byl + nlisnll
r 2r
3n y
< Z(“‘sn” + lIsn—1ll + - -+ lIsoll ) + IG'(x0) — Bol|
3
< —'7(r"“+r"+l o4 r?) 4dr
2r

3pr 1 —
< %(ﬁ)-l-drf?n]r-l—drfar,

if we choose « such that o > 375 + d. This establishes Claim 1(iii).
For proving the induction step for Claim 1(iv), by using Claim 1(i), [|Xpp1 —Xoll < r(1—1"t1) < r, and so X1 € B,(xp).
From (3.3), G'(xp41) is invertible and

1 1
G (Xnp1) M| < < .
16 Gane )l = 1— Nxnt1 —Xll = 1—17
r
) 1 , 1 . .
Define 4 = —— > 1. Then ||G'(Xy41)" || < u, as we need for Claim 1(iv).

To prove Claim 1(v), notice that:
G'(Xn1)'Bup1 =14 G'(Xpp1) ™ (Bns1 — G'(Xnt1) ) (3.7)
and
IG (1)~ (Bag1 — G Ras)l < 11G (g ) ™ 1Bagr = G (Xng1)l < parr.
Assume par < 1, then by Lemma 1.2, G'(X;41)” 'Bnyq is invertible which means B, is invertible and

1

1= G (Xa41)" " (Bug1 — G'(Xny1) ) I
1
1—par

-1
H (1 + G )" Bast — G nsr) ))

IA

-1
From (3.7), B}, = (1+ G'(Xp+1)"" (Bpp1 — G/(XnJr]))) G (Xn1)™"

w

Cloni) | = 77— ot

1Byl <

-1
<I + G/(Xn+l)_l (Bn+l - G,(Xn—H) ) )
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Let f = max , _ , then ||Bn‘l] | < B, establishing Claim 1(v). Notice that 8 > 1, since
1—dr 1— par
1 r
A —1g R
1— par 1—n—oar 1—n—oar

To prove the induction step of Claim 1(vi), since B, is invertible, s, is well defined. Also 8§ < 1 by assumption,
therefore,

—1 -1 3 3
ISns1ll = I = By Gns Il < 1B M Glxag 1)l < BET™ < 12,

which is Claim 1(vi).
Therefore by using mathematical induction we have the results. By using Claim 1(vi) we could say {x,} is a Cauchy
sequence lying in B,(Xp). Given p, q > 0,

p+q—1 p+q—1 0 (P2
k+2 2 k __ +1
1% — Xpiqll < E IXkr1 — Xkl < E r <r E r= 1—r <rP*
k=p k=p k=p
. 1 1 1 s = . . .
since r < 3 = — < —. Therefore {x,} converges to a point x* € B.(xp). By using the fact that G is a continuous
—r r

function and ||G(x,)|| < &r"*? , it follows that G(x*) = 0, which implies F(x*) = 0. By taking ¢ — oo and p = n in the
above calculation we get ||le,|| < r**1, where e, = x, — x*.

Now for proof of uniqueness, let X be any zero of F in B;(xg). Below, we show that ||&,.1]| < ||éx||/2 for all n > O,
where ¢, = x, — x. Notice that:

nt1 = Xnp1 — X =Xy +Sn — X = X, — B, 'G(x,) — X
= B, 'By &, + B, ' (—G(xa) + G(X) )
=B, (Ba — G'(xn) ) & + B, ' (—G(xa) + G(X) + G'(xa)2y).
By (3.4),

lensall =

B! (—G(xn) + GR) 4 G'(xn) &n + (By — G'(x1)) én)

nllén|l
2r

Since X, X, € B;(xo) then ||&,|| < 2r. The above inequality becomes

nllénll
— +
2r

—1 ~
< Bl liéall (

+ ”Bn - G/(Xn) ”)

A A . 1.
8ns1ll < B lIEnll ( ar) < B(n +a)léa]l < 5 l1eall,

1 . 1
if we assume B(n + «) < 7 So |leq]| < 7 Therefore,

1
5 5 1
% = x| < 11X = Xnll + 1% — X*|| < on +

Let n — oo to obtain the uniqueness result.

Take n = 621 1) The constants in the proof of this claim could be chosen as:
g 13 £ = 11+47r ﬁ_3(2+r)2
62 41) T6(24r1)2° T o1n+7r
12 +6r 342r
- 7 B i 38
F=%x1r YTy (38)

so that all inequalities in the proof are satisfied. The calculations for finding the constants are given in Section 3.1. This
completes the proof of the theorem. O

Example 3.1. We now consider an example which illustrates that the constants in the above theorem cannot be arbitrary.
Consider N = 1 with £ = (0.1, 1) and F(x) = x. Clearly this trivial example has no solution in £2. Take, for instance,
Xo = 0.2. Then for any r < 0.1, B,(xo) C £2, assumption (3.1) of the theorem reads ||xo|| < £r2, which cannot be satisfied
for £ = (114 7r)(2 4+ r)~2/6. It is not claimed that this value of £ is optimal, but at least one assumption of the theorem
must be violated because there is no solution in £2.

Next, consider another 1D example with £2 = (—1, 1) and F(x) = x(x + 2). There is a unique root at zero in £2.
We check the hypotheses of the above theorem for this simple example. Consider r = 0.05. Using (3.8), the inequality
(3.1) is equivalent to xo € [—0.0011, 0.0012], while the inequality (3.2) becomes x, > —0.3850, which is less stringent

7
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than (3.1). Finally, (3.2) is equivalent to 1.5439(xp + 1) < Ag < 2.0046(xo + 1). Note that the lower bound is positive
and, in conjunction with (3.1), guarantees convergence of the iteration to the root 0. The bounds on xo and Ag, which
are sufficient but not necessary, ensure that the iteration is well defined in §£2 and converges to zero. A poor choice of
Xo and/or Ag may lead to x; landing outside of £2. As a concrete example, consider xo = —0.9 and Ay = F'(x9) = 0.2.
Then x; = xo — F(x0)/Ao = 4.05 ¢ £2. Here x; lies outside of £2 due to a wrong choice of x violating (3.1), while Ag is
acceptable since it satisfies (3.2).

Next we show superlinear convergence of Broyden’s method. The proof follows closely that of Theorem 8.2.2 in [3].

Theorem 3.2. Assume the hypotheses of Theorem 3.1. Then the Broyden'’s iteration converges superlinearly to a unique zero
of F in B,(xq).

Proof. By Theorem 3.1, the iterates {x,} defined by Broyden’s method converge to x*, unique zero of G in B;(xp), where
G(y) = F'(xo)"'F(y). Consequently x* is the unique zero of F in B,(xg). Assume that G(x,) # 0 for all n > 0, we have:

leall <™ |El <ar,  IG &) <,
IGxa)ll < &r™72, |IB ']l < B,

where e, = x, — x* , E, = B, — G/(x,), and the positive constants are given by (3.8).

Claim 2. Vn > 0,
llenll
0
. 3n
(i) Entall < lIEnll + TIIEnII-

(0)- llensall <

The proof of Claim 2(i) is identical to the proof of ||€,41]| < ||€x]|/2 in Theorem 3.1 and is therefore omitted. To prove
Claim 2(ii), for any n > 0,

G(Xp41)sT
En+1 = Bn+1 - G/(thq) =B, + ﬁ;zn - G/(xn+1)
n
, G(Xn+1)sh ,
= By — G(xa) + —”;*”2 %+ G/(xn) — G (Xns1)
n
T T T T
SnSp (G(Xn41) — G(xn) )Sn Eusus, G(xn)s,, , ,
= E(I - ) + G'(x5) — G'(Xn11),
" Isall? [NE lsall2 " lisall? ! "
but G(x,) = —B,Sp, SO
s,sT (G(xp41) — G(xp) — G'(Xn)sn )ST , ,
En1 = Eq(l — ”s" 2 i ||sn||2 PR 4 G (Xn) — G (Xnpa): (3.9)
n n

Consider the second term on the right-hand side of this equality. By (3.4),

nlisall

Il G(xns1) = G(%n) — G'(xa)sn || < Zr"
_ nlsal

2r
nlisall

2r

lIsnl

(a1 = X1+ 1% — %)

IA

(lentll + lleal).

Therefore, by Claim 2(i),

nllsall
;

I G(xn+1) — G(*n) — G'(xn)sn lleall. (3.10)

IA

and

G(Xnt1) — G(Xn) — G'(xXn)sy || |IsT ,
” ( ﬂ+1) ( ”T!S) ”2 ( n) n ” ” n” + ”G/(Xn) _ G (xn+‘l)”
n

| G(Xnt1) — G(xn) — G'(Xp)sn |l . 1Xn1 — Xnll
lIsnll r

n n 3n
< llEall + ;Ilenll + . (llens1ll + lleall) < IEall + TIIenII,

lEns1ll < [IEnll +

< [lEall +

which establishes Claim 2(ii).
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Claim 3.

(i) There is some positive integer m so that for all n > m,

llenll

IG(xa)Il = m?

T 2
.. SnS 1 IEnsSnll
(ii) |En(I — —= < ||EallF — foralln > 0;
ol HMP)F " 20lEalle sl
oor |IEnSnll
(iii) — 0asn— oo.
lIsnl

To prove Claim 3(i), recall from (3.5),

llsall>
G(x < —
16l = —-

and also

+ ar||sall,

1
G(¥%n41) — G(xn) = G'(xy)sn + / ( G'(t Xpp1 + (1 = £)x3) — G'(xy) >3ndt-
0

Then,

\

1
n
IG(x)ll = 1G'(Xn)snll — 1G(xnr 1)l — ;/ tllsalldt
0

Isal o
— G (xs 1) — = s
> i = 16l = s
sl _ nlisal?
R

mn( 1 _wmtwq
"G @) r

Notice that ||e;+1]| < |lexll/2, and so

llenl|
—= < lleall = llent1ll < lisnll < llensall + lleall < 2llexll,
leading to,
llenl| 1 27nleq |l
Gxp)|l = — — —ar). 3.11
166l = 5= gy~ ) (3.11)
Since ||e,|| — O, there is some m so that for all n > m,

ar?

r
< ==~ 5
G (xa)" Ml 21
Note that by (3.8), the right-hand side of the above inequality is positive. Then
2nlen|l

llen

r<

2(1G(xa)
and on substituting this into inequality (3.11),

llenll

> — =

4G (xa) 7l
This concludes the proof of Claim 3(i).

Claim 3(ii) is Lemma 8.2.5 in [3]. We include its proof for the convenience of the reader. For any matrix E and vectors

1G(%n)

u and v, we have ||E + uv"||2 = ||E||Z + 2v"ETu + ||u||?||v]|%. Apply this with u = —E,s, and v = s,/||sx||* for any n > 0
to obtain
Emiz_wnznamﬁ
n— = llEnllp — .
lsall? I T lsall?
Consequently
1/2
Snsh 2 lEsal®\Y 1 |[Ensall®
Eqp| 1 — 2 = ”En”F - 2 =< ”En”F - 2
sall* /|| lIsnl 20EnllF lIsnll

using the inequality (a® 4+ b?)"/? < a — b?/(2a) for any a > b > 0. This concludes the proof of Claim 3(ii).

9
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To prove Claim 3(iii), use (3.9), (3.10) and (3.11),

SnST (G(Xn41) — G(xy) — G'(Xn)sp )sT

IEnalle = |Ea(1— =5 )| + = 16 (%) — G kgl
Isall2 ) || Iz r

1 ”EnSn”2 3n
< Eallr — + = VNlell,
20Ealle llsal2 T "
leading to
I Ensal®

3n
TNE < 2|lEallrC |EallF — Ens1llF + - VNllexll)
n

IA

3n
2/ Nar( [|Enllr — |Ens1llF + — VNleall).

Summing over n from 0 to m for any m, we obtain

" ([Ensnll? 37 1
n<n
; < 2+/Nar ( Eollr = IEm1llr + == VNlleol Z; o )

154112
3
< 2VNar( Bl + 7” VNlleol ).

Since ||Eollr < /Ndr and [leo|l <,

m
Ensnll?
§ | ”"! < 2N(dr + 3n)ar.
= sall

Take m — oo to conclude that
||Ensn||2
m =

oo ||spl|?

This completes the proof of Claim 3(iii).
We are now in a position to conclude the proof of Theorem 3.2. From the Broyden’s iteration, for any n > 0,

0 = BuSn + G(Xn) = Ensp + G'(Xn)sn + G(xn).
Therefore,

_G(Xn+l) = Ensn + Gl(xn)sn - G(Xn+1) + G(Xn)s

leading to
I G(xn 1)l < IEnsnll | IG'(Xn)sn — G(Xnt1) + G(xa)|| < l|EnSnl + el
lIsnll lIsnll lIsnll lIsnll r
by (3.10). By using Claim 3(iii), we have
G(x Ens
lG(Xn1)Il - l|Ensn l + 7 lim e, =o0.
n—oo syl n—>oo ||syl| 1 n—oo
By Claim 3(i), for n big enough,
16 DI 1 lentall T llental
lisall 7 4IG (X)L Nisull ™~ 4 llenll + llentall
Let ¢, = |len+1ll/lenll. Therefore,
0= tim MG 1 el 1 el
n—oo |lsy || 4p n—oo llenll + llensall  4p n—>o0 1+ |lCntal

This implies that lim,_, », cp+1 = 0, which is superlinear convergence. O

3.1. Appendix

This appendix provides the calculations for finding the constants in the proof of Theorem 3.1 so that the following
relations among the constants are satisfied:

10
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1 1
1.n<1landdr <1, 6. = max , ,
1—dr 1—n—oar
2.§zn+a,
3.0 >3n+d, 7.5 <1,
1
4op=—0y,
123 17
1
5. nar < 1, S.ﬂ(n—i—a)fi.
By using Condition 3. we have « > d and so
f=m 1 1 1
= ax N = .
1—dr 1—n—oar 1—n—oar
Let & + o and B& 1so that 8 ! ! Thus
= o = - = — = —,
7 2 2% 2(n+a)
1 1 1-3 r—n+1 24r
= = o = n, 527’) n s = -
1—n—ar 2(n+a) 24r 24r 2pr —n+1)

1
Note that nr — n+1> 0, if n < T Define

2n  1-=11n—3nr

d=o—3n-— =
24r 24r
We need to be sure that d > 0. It is sufficient to consider
. 1 1 1
0 < n < min , = .
114+3r 1—r 11+ 3r

1
Notice that by the expression of &, @, 8 and d we have, uar < 1 ifandonlyif 5 < - which is true. Also
24 11pr + 31

1
1—dr= > 0 lead to dr < 1. Furthermore 8(n + o) = B€ = —.
241 1 2
In summary, with r < —, we choose n = , and
2 6(2+r)
g 13 g LA ﬁ_3(2+r)2
T 6(241) T 62412 TN+
12 + 6r 34+2r

=i YTt
4. BFGS algorithm

Let £2 be an open set in RV and f : £ — R be smooth. The problem is to find a local minimum of f in £2. Of course,
one can simply apply Broyden’s method to the nonlinear system F := Vf = 0. However, in general, the approximate
Jacobian in Broyden’s method is not symmetric, clearly not an ideal situation since the exact Jacobian is symmetric. There
are many ways to obtain a quasi-Newton method where the approximate Jacobian is symmetric. The most popular is the
BFGS algorithm. Given xo € £2 and SPD initial approximate Jacobian Ay, the iteration is:

Sn = _An_lF(Xn)’

Xn+1 = Xn + Sn,

Yn = F(xn11) — F(xn),

YnYn  AnsuSiAn

Vrsy STAnSn

Ant1=An +

for any n > 0. Notice that consecutive approximate Jacobians differ by a rank-two matrix. Superlinear convergence and
global convergence for BFGS algorithm with line search with classical assumptions are known. See, for instance, [3] or [4].

We now show local convergence of the BFGS algorithm using Kantorovich-type assumptions. Except for bounds on the
extreme eigenvalues of the Hessian, only one constant appears in the theory.

Theorem 4.1. Let 2 be an open set in RN, f : 2 — Rand f € C3(2). Let F(x) = Vf(x) and F'(x) = D*f(x). Assume xg € £2
and B,(xy) C £2 for some 0 < r < 1/2. Suppose there are positive constants m < 1 and M such that for any z € RN and

X € By(xo),

miz|* < 2" D*f(x)z < M|jz||.

11
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Also

IF (xo) ™ 2F(xo)|| < ar, (4.1)
| o nllu—vll

IF'(x0)™2 (F'(u) — F'(v))F'(x0) 2| < NG

where a and n are positive constants dependent on r (to be defined later). If r is sufficiently small (satisfies (4.20)), then the
BFGS iteration {x,} with Aq = F'(xo) is well defined and exactly one of the following cases holds,

(i) F(x,) = O for some n > 0.

(i) {x,} converges to a unique zero of F in B.(xp).

Yu, v € B(xg), (4.2)

Proof. First notlce that by giyen assumptions of the theorem, m < |[F'(x)| for all x € B(xo), especially IF'(xo)~ 1| < 1/m.
Let G(§) = (xo)‘iF(F’(xo ~2&). Observe that G(¢*) = 0 if and only if F(x*) = 0, where x* = F'(xo)"2&*. Since F'(xg)2 is
invertible,

G(E™) = F'(x0) 2F(F(xo) 28*) = 0 & F(x*)=0.

Also we have:
G/(€) = F'(x0) ZFU(F (%) 26)F (x0) 2.
We apply BFGS algorithm for G(&¢) with By = G'(§) = I and & = F/(xo)%xo. For n > 0,
= —B, 'Gl&).
En1 =&+ ty,
zn = Gl&nt1) — G(&n),

zpzl  Butat!B,
zlt, tTByt,

Bn+1 =B, +

Assume F(x,) # O for all n > 0. We apply mathematical induction for proving &, = F/(xo)%x,1 and also B, =

F ’(xo)’%AnF/(xo)’% for all n > 0. The basic step holds trivially. Assume these statements are true for some positive integer
n, then

1 1 , 1
b1 =&+t = F'(x0)2%y + F'(X)Zs, = F (X0)2Xpq1.
Notice that by using induction hypothesis,

1

th = _Bn_lG(sn) = —(F’(XO)_%AHF’(XO)_j)—l F/(X())_%F(F,(X())_%Sn)
= —F(x0)? A, "F(xa) = F'(x0)? 0.

Furthermore,
1

Zn = Gleni1) — Gl&n) = F'(x0) 2 (F(Xny1) — F(xa)) = F'(X0) ™ 2¥n,

then by using definition for B, we obtain

Bust = F/lx0) A (x0) 7 + Fl(xg) 3 222 ';y “F(x0) 7 — F/(x0) 7 " F(x0) 2
YnSn SnAnSn
T
_1 Yy, AnsnS An _1
= Fl(x)2 (A no_ Tl B(xg)"2
(x0)72 ( n+y£5n A, ) F'(Xo)

= F'(x0) 2 AnarF(x0) 2.
By using assumptions of the theorem,
’ _1 ’ _1 ’ _1

IG(€)l = IIF(x0)™ 2 F(F'(x0)~2&0)ll = [IF'(x0)"2F(xo)Il < ar®.
Let o = mr. Notice that for any w, T € B,(&),

I6'(@) = G = IF(x0)™2F (F(x0) 2 @)F (x0) ™2 = F'(x0)”2F (F (x0)"27)F (x0) 2|

/ -1 ! / / _1
= [IF'(x0)~2 (F'(u )— (V)F'(x0) 2|

n 1
< —=llu—vll = —=IlIF(x0) 2 lllo — 7|
Jr f
n n
< llo—zll = o —zll, (4.3)
Jmr JP

12
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since ||F'(xo) 2 || < ﬁ Then by Lemma 1.5,

IG(@) = G(7) = G'(T)(w — 1)l < ﬁllw -7’ w7 eB, (&) (4.4)

Below, we state and prove Claim 4, which is central to this proof.

Claim 4. There are some positive constants ¢, u, y and 8 dependent on p (to be defined later), such that for n > 0,

(i) 1&n — &oll < p(1 —p");
(ii) IGEIl < ¢p"*2;
(i) G'(&,) is invertible and ||G'(£,)"1| < w;
(iv) By is invertible and ||G'(&,)~! — B || < yp(1— p");
(v) 1B, 'l < B;
(vi) lItall < p™*2.

Notice that if ||&; — & || < p(1— p"), then |[x, —xo|| < mr(1—m"r") < r since m < 1. Thus x, € B,(xp) and &, € B,(&).
Also ||t,|| < p"* results in ||s,|| < r"*2.

Now we prove Claim 4(i)-(vi) by using induction. The base case for Claim 4(i) is trivial. Since ||G(&,)|| < ar?, assume ¢ >
a/m?, then ||G(&)| < ¢ p?. (Note that all additional assumptions on constants in this proof are summarized at the beginning
of Section 4.1.) Also ||G'(&)~ || = |lI|| = 1. Let u > 1, then ||G'(£&)~!|| < w. By assumption By = I, so it is invertible and
by choosing 8 > 1, the base cases for Claims 4(iv) and (v) are satisfied. Also || to|| = || —Bg1G(§o)|| = ||G(&)|| < ¢p? < p?,
if we require ¢ < 1. Next, assume all of the statements are true for some integer n > 1, we will show they hold for n+ 1.

To prove the induction step of Claim 4(i), observe that B, is invertible by the hypothesis of induction, &, exists and

1Enr1 —&oll < léns1 — &nll + 1150 — &oll
<"+ p(1—p") = p(1—p"(1—p)) < p(1—p"*"),

1
since p < —. This completes the proof of Claim 4(i). Moreover ||£,11 — &l < p, S0 &1 € By(&o).
To prove Claim 4(ii), we first show that there is a constant « such that

IG'(&n) — Bull < ap.
By the induction hypothesis,
IT=B " < I = G(&) I+ 1IG (&)~ — B,
< G E) G () — G &I + 16 &) — B,
=< uny/p(1=p") +yp(1—p").
By assuming = un+y./p, we get |[—B,!|| < yf Let A, 1 <j < N be eigenvalues of B !. Therefore |1 — ;| < 7./p

A

forall 1 <j < N. Also ||B,|| = maxj<j<n ‘ < ————, assuming 7./p < 1. Then
IG'(5n) = Bull = 1G'(&)(G'(5) " — B”)B I
/ ! I"Ly
< |G G Bi| < ————— p < ap,
< IGEDNIG &)™ =B I 1Ball < l_y\/ﬁp_ap
by assuming a2d =<
— Vf

We proceed to show the induction step for Claim 4(ii). By definition, t, = —B;'G(&,). Use (4.4) to get
1G(&n+ 1)l = 1G(Ent1) — G(n) — G'(&n)tn + G'(&n)tn — Butu |

f ”G(antl) - G(Sn) - G’(Sﬂ)tﬂ” + ”(GI(SH) - Bn)tn”
2

< "2”}” +apltll = ||tn||(';”j£ +ap)

Spnﬂ('lﬂ +ozp)<,0"+3 (0P +a).

2/p
If we assume n,/p +a < ¢, then ||G(&,41)I| < £ p™3, as we need for Claim 4(ii).
Now we show the induction step for Claim 4(iii). By (4.3),

IT = G'(&ns1)l = 1G'(80) — G (1)l < 7||En+l —&oll = n/p.

13
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Assume 7,/p < 1, then by using Lemma 1.2, G'(,41) is invertible and

/ -1 1
G (Ens1) "Il < =g

Define
1

RN

then ||G'(£n41)" "Il < , which establishes Claim A(iii).
To prove Claim 4(iv), notice that there is some & between &, and &, so that

tnzn = t5(G(Ens1) — G(&n) = ,G'(E)tw > 0,

since D?f and hence G’ is SPD in a neighbourhood of the initial point. Hence B, is invertible and, in fact, SPD. Take any
k satisfying 0 < k < n. By using Sherman-Morrison-Woodbury formula,

m (4.5)

T Tp—1 —1 T Tp—1
Bl —pl 4 by a Z B "z, Bzt + 6z By
k+1 = Dk T T T :
Z, b Z, by Z, b
Define
thT
Po=1-— =%,
b Zk
then,
tet]
-1 ~1 k
Bl = PuB Pl 4+
K Zk

For brevity let B = G'(&;). After some calculations,

tty
tkTZk
(tx — B™'2)t] + tu(t — B '2)'P}

l',Z-Zk

B'—B., =B"—PB,'P —

= P(B~' =B, )P —

Define the following norm which depends on the iteration number k > 0:
Xl = IG'(6)"2 X G'(6) 2 I
for any arbitrary matrix X € RN*N. Observe that
It — B~ ')t} |l n Nl et — Bilzk)TP;Z.”k.

IB™" = B! Ml < IIP«(B™" — B )P Il + - - (4.6)
b Zk b Zk
Below we will find estimations for each term of this inequality. For the first term,
IP(B™" — By "P[ Il = IB2PB 2B (B~" — B, ")B2B 2 P{B? |
< ||B%Pk3_%||2 IB~" — By Ik
1 t,ZT 1 _ _
= ||B2(I — %)B 212 1B~ = B ik
« Zk
Bre)B 2z |2
=|l-————5—| IB7 =B Ik
(B2t,)T (B~ 2z)
1 _1 2
IB2 ti |l 1B~ 2zl _ _
= <7 IB™" = By k.
(B2ty)T(B™2z)
For the last line we used Lemma 1.3. Define
1 1
B2t,)(B" 2z
:(lk)( 1I<) <1
B2t |l |B~2zl|
to obtain
_ _ 1 _
IP«(B~" — B, "IP{ i < — B - Bl (4.7)

14
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Consider the second term of the inequality (4.6),

1 _ 1
It = B™'z)tg e 11B2(t — B 'zi)t; B2 ||

tliz tlzy
B2 (6 — B~'2)]|[1B2 &
tkTZk
_ 1 IIBka—B 2Zk|| (43)
W B2z
Similarly for the last term of (4.6),
lte(te — B2 P Il B2 tit — B~'2) P[B2 ||
tizi tizi
B2 (B2t — B~2z,) B~2P[ B2 |¢
f,ZZk
IIB2 kaIIIBZtk - B_flkll IB~ ZPTBZ Il
thk

1 |Big B zzku (49)
w? Bz

For finding an estimation for the right-hand side of this inequality, notice that B = G'(&),
tie — B~ (G(&r1) — Gl&))
= t; — G'(&) " (GlErs1) — G(&) — G (&)t) — i
1
=B f (G'(& + ) — /(&) tid.

0

—1
te — B Zk

Therefore by (4.3),

BZt - B~ 2z <—Bif 1y 4.10
B2 ti Kl 2\fll el (4.10)

Since zi, = G(&x41) — G(&) = G/(E)ty for some & between & and &, it follows that t;, = G'()~ 'z, and

. M 1 M
ltell = 1G'GE) Mzl < = = ,
izl = miftell

11 1 _1
llzkll = |B2B 227(” < IIBZIIIIB ZZkII,
1 B3| _ MIB?|
— < < :
1B 2z~ Mzl = miltel
(4.10) and (4.11) together imply:

(4.11)

1 _1
B3t — B 3z _
B2z 2mJ/P

m M
By using the assumptions of the theorem, i < |IGE) < m for any & € B,(%). This implies IBIIB~!| =
2

1001
1B=2(HIB2 [l Il (4.12)

2, and define

’ /e \—1 M 2 nM
G (EDING (&) < (m) . Now choose 7 such that

L
= <1 (4.13)

Then
M b aE e < <2 e = <A e !
kll = kil = I -
2m./p 2m/p Nera fz =2
From Lemma 1.4,
M 2 2 t 2
1—w25( L ||B—%||||B%||||rk||) < Al

1
2m/p 2 2
15

p

(4.14)
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1
so w2 > 3 and

LIPS El 1+z( Ul ||B—%||||B%||||rk||)2

w w 2m,/p

1422 A =14 Al (4.15)
V2 V2p

Combining all estimates (4.7), (4.8) and (4.9), followed by an application of (4.14), (4.15) and (4.12), inequality (4.6)

becomes

IA

2 |IB2ty — B 2z

2 1
w B~ 22|l

1+ A B - B+ /214 A A 4.16
(1+ Aplltel) I e e+ v2(1 4 ,0||tk||)ﬁ||fk||- (4.16)

L 1
IB~" = By llk < — B "Bk +

IA

Notice that for any arbitrary matrix X € RN*N,

IXls1 = 16 ()2 X G ()2 lle
= G (& 1)2 G (&) C(&)2 X G(&)? GI(&) 2C (Eesn)? [Ir
< 16 )G ) X e

In last line we have used Lemma 1.1. Observe that,

G'(&1)G (57" = (C(6ki1) — G'(5) + G(€))G (5) 7"
= (G'(&1) = G(E))G (&) +1,

therefore by (4.3),
IG (i 1)G (&) < 1+ 16 (§k1) — CEINIG (&) < 1+ LLTN (4.17)
JP

So we obtain

nw
IXNkr1 < (14 —=lltel) 1X Ik,
Jp

Define k = 1+ %”ﬂc”- Therefore || X||x+1 < «||X|/x. Notice that by using induction hypothesis and (4.5)
0

UN —
1—nyp

nu k+3/2
K =1+ —|tll <1+ nup <1+
NG
From the inequality (4.16),
_ _ _ _ A
1B~ — By et < w(1+ Aplitel) 1B~ = By 'l + V26 —(1 + Aplitel) 1 tell.
JP
o)

_ _ _ -~ _ _ A
IB~' = Bl — 1B = B 'l < (k — 1+ xAplitll) |IB 1—B,J||k+~/ixﬁ(1+A)||rk||
nw -1 -1 A
< (= litell + k Aplltell) 1B — By Ml + /2 —=(1 + At
NG ‘ VP

nu I A
< <(—+/<Ap)||3 1—Bk1||k+ﬁi<—(]+A)>||tk||.
NG

JP

Notice that B = G'(&), by adding and subtracting G'(&x41),
16 (5t = Byl — G507 — By Ml

A
<G G = GE) s + ((17/% +1cAp)IB~" =Bl + ﬁkﬁ(l + A))Ilfkll- (4.18)

16
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Also by Lemma 1.1 and inequality (4.17)

IG )™ = G (&) ke = 16 (Er1) ™ G (5G (6) ™" — C'(6k1) ™" G (Ek1)G (81 ™ e
= 1G' (k1) (G'(5K) = G'(Eks1)) (&) Ml

1

= |G (&k+1)2 G (Exs1) ™" (G'(&k) — G'(&i11)) G/(Sk)ilc/(glwl)% (13
VN

< 16 Err1) 2 G (E) 7' (Eesn)2 | ﬁ" &1 — &l
1 1 N
< 16 ) G ) IVICET 0 T e — &l
NG
VKN
< Y.

NG

Then by substituting this in (4.18)
IG &)™ — Belillirr — 168" — Bl

N
< (@ +(L\/l% +xAp) 1B~ =B Ml + ﬁx%(l + A)) It

From the induction hypothesis, |B~! — B '[lx < yp(1 — p*) < yp. Take the sum from k = 0 to k = n and using the
induction hypothesis of Claim 4(vi) to obtain

G (Ens1)™" — By i llnr — G/ (o)™ — By o

VKkNnu nu NG A ) 2 - k
(== 2k—(1+ A § ) 4.19
5( NG +(ﬁ+KAP)VP+ Kﬁ( +A4))p k:Op (4.19)

Notice that G'(&) = By = I, s0 [[G'(&)~" — By 'llo = 0.
IG (Ens1) ™ = Byl ill < G )™ — Byl lIe
/ _1, 1 / — — 1, _1
= G/ (€n1) 2G (§ns1)? (C'(Ent1) ™" — By ly) G(€ns1)2G (Ens1) 2 1IF
< NG Ens1) NG Engn) ™' — B;:] lns1-
Use inequality (4.19) to obtain,

IR o [VeNow A u
G’ n 1—B 1 G’ n 1 |: +(— + A + ﬁ o 1+A:| 2 k
G (5nt1) w1l = 16 Gnn) |l NG (\/,5 KAP)yp K\/,T)( ) p k§:0:’0
< M[mw+(nu+xAp3/2)yp+ﬁxA(1 +A)]p3/2 3 o

k=0
n

1P(/2uNn + (+ p* Yy p +2v/2)p° > ok,

k=0

IA

1
since A <1, xk <pandn < /2 due to (4.13). Notice that p =< X then

n+1

n 1—p
§ Pt = -5 = 2(1—p").
-p
k=0

Therefore by assuming p such that 4u%(/uN + yp + ﬁ)ﬁ <y,

IG (Ens1) ™" = Byl Il < 4P (VN + v p +~V2)p*2(1 — p™1) < yp(1 — p™ ).

This concludes the proof of Claim 4(iv).
Now we prove the induction step for Claim 4(v).

1Bl < vo+ IG (En) 'l < v + e

Define B > yp + u, then ||B, || < B, which is Claim 4(v).
Finally, we prove Claim 4(vi). By using definition,

ltasall = Il = ByyGlans )l < 1B MIGGEns )l < BE o™,
17
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assume B¢ < 1, then ||t,41]| < p"*3, establishing Claim 4(vi).
Therefore by using mathematical induction we have the results. A consequence of Claim 4(vi) is that {&,} is a Cauchy
sequence lying in B,(&). Given p, q > 0,

p+q—1 p+q—1 00 pp+2
k+2 2 K 1
165 — &piqll < €1 — &l < Pt <p® ) pft=—— <pMth
1—
k=p k=p k=p p

Therefore {£,} converges to a point £* € B,(&). By using the fact that G is a continuous function and [|G(&,)|| < ¢p"+?,

it follows that G(£*) = 0, which implies F(x*) = 0, where x* = F/(xo)’%é*. By taking ¢ — oo and p = n in the above
calculation, ||&, — £*|| < p"L. Let e, = X, — x* and o, = &, — £*, then

lowll < ™1, lleall < ™1

Notice that £* € B,(&) and x* € B(x).
For proof of uniqueness, let £ be any zero of G in B,(&;) corresponding to a root % of F in B.(xo). Below we show that
601l < ll6nll/2 for n > 0, where 6, = &, — &. Notice that:

&n+1 = §n+1 _é :$n+fn _é :SH_B;]G(sn)_é
= B, 'By 6n + B, ' (—G(&n) + G(£) )
= B, (By — G'(£) ) 6n + By ' (—G(&n) + G(€) + G'(£n)6n).

By (4.4),
6wl = | B, (~Gl&n) + GE) + C(&n)dn + (B — G'(6n)6n )|
-1 A Gl e
< 1B 1 a1 (22 + 182 = G@I)-

Since § , &1 € B,(&) then |6, < 2p, then by using above inequality, we have
nll6 |l

2/p

1 A 1
if we assume B(n + a/p) < 5 Therefore ||&, — &|| < o and

. . . . 1.
Ins11l < B 16l ( +ap) < B (/o +ap) 6l < B(n +ay/p)ll Gull < EIIGnII,

A A 1
I§ —&" < 1§ — &ll + 116 — &7II < o + oM

Let n — oo to obtain the uniqueness result. Let

N7

n | v2Zm? o1
< n < min L= -
96+/2(+/N + 1) M2 6
with the former inequality equivalent to

2

n
r< . 4.20
18432(v/N + 1)2m (420
Finally, it is enough to define the constants as
1
n=—, (4.21)
1-nyp
y =24V2(vN +1)/p, (4.22)
B=yp+u=24Y2AVN+1)pyp +u, (4.23)
1 1
(=— =, (424)
28 2yp+p)
a =4y = 96v2(v'N + 1)/p, (4.25)
2
a=_"m (4.26)
2(yp+p)

The calculations for finding the constants are given in Section 4.1. This completes proof of the theorem. O

In classical proofs of global convergence of this method, the minimum is assumed to exist and a fixed, so-called, BFGS
norm can be used to estimate the difference between the approximate and exact Jacobians for all iterates. In our setting,

18
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in the proof of Claim 4(iv), the minimum is not known a priori, hence requiring a norm which changes with each iteration.
We believe that this technique is applicable in more general contexts.

Example 4.1. While Theorem 4.1 assumes uniform convexity of f, it does not follow that the iterates converge to a
minimum x* where F(x*) = 0 without further assumptions. Consider the simple example N = 1, £ = (0.1, 1) and
f(x) = x?/2. Clearly f has no critical point in £2. Take, for instance, x, = 0.2. Then for any r < 0.1, (4.1) becomes
0.2 < ar?, which cannot be satisfied for a defined by (4.26). Again, we do not claim that this value of a is optimal. In this
example, at least one assumption of the theorem is violated because the minimum is not attained in £2.

Next, consider the uniformly convex function f(x) = x*/2 — x*/12 defined on £ = (—.94, .94) with minimum x* = 0.
For any xy € £2,Ag = 1 —xé and we can take m = 0.1, M =1, p = 0.1r and n = 0.01, leading to

1 0.01
e —— = 48+/0.2r, a=—"
1-—0.014/0.1r 4 2(0.1yr + )

Inequality (4.1) becomes

Xo —X3/3 o2

Ji—x|

which restricts xo to be close to the exact solution. Provided (4.1) and (4.2) hold, the latter being not restrictive in light
of (4.1), the theorem correctly states that the BFGS iterates converge to the unique minimum superlinearly. Note that
without (4.1), an iterate may venture outside of £2. For instance, take xo = 0.9, then A is close to zero causing the next
iterate to be outside of the domain:

F(xo) 0.9 -0.93/3

=09 - = —2.5579... & 2.
Ao 1-0.9? #

X1 =Xp —
We remark that in assumption (4.2), we assumed r~1/2 dependence on the right-hand side. Initially, we assumed r~"
dependence as in the theorem for Broyden's method, but were unable assign values to constants (similar to (4.21) to
(4.26)) so that all required inequalities are satisfied.

Below is a result on the superlinear convergence of the BFGS algorithm with Kantorovich-type assumptions.

Theorem 4.2. Assume the hypotheses of Theorem 4.1. Then the BFGS iteration converges superlinearly to a unique zero of F

in Br(xo).

Proof. By Theorem 4.1, the iterates {&,} defined by BFGS method for G(&§) = F /gxo)’%F (F /(xo)’%é) converge to £*, unique

zero of G in B,(&p), where p = mr. Consequently {x,} converges to x* = F'(xy)”2&™, the unique zero of F in B;(xo). Assume
that G(&,) # 0 for all n > 0. So &, # £*. Also we have:

IG (&) = Bull <ap, 1IG' (&) =B Il <yp(1—p"), G E) I < n,
IB, Il < B, G < 2™, ltall < 0", llonll < p™*.
where o, = &, — £*, and the positive constants «, 8, y, u and ¢ are given by Egs. (4.21) to (4.26). Using exactly the same

technique as in the previous theorem to show ||G,.1]| < [16all/2, we could prove that |0, 1|l < |lonll/2. The rest of the
proof follows almost exactly as in [4] and is omitted here, but can be found in [11]. O

4.1. Appendix

This appendix provides some of the elementary calculations for finding the constants in the proof of Theorem 4.1,
omitting all the details which can be found in [11]. The required relations among the constants could be summarized as:

1
1.p=mr§§andm§1, 6.7 =un+y/pandy/p <1,

2m? 1
2y <minf Y2 11 7. M g,

M2 6 1-9p

8. 8= max{yp +u, 1},
3.a < m?, 9.8 <1,
4 yu=—, 10.n4+a=<¢=<1,
1—nyo .

5.40%(VuN +yp+v2)/p <y, 1L.Bn+a)< R
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By assuming the value of the constants u, y, 8, ¢, « and a as defined in (4.21) to (4.26), we need to show that Conditions
1 to 11 could be fulfilled if

NI vam? 1}<min{\/§m2 ! }

U :
<———, and n<min{ —, = )
96+/2 (+/N + 1) I M2 6 M2 54 . /p

Notice that by the last assumption,

1
n < <1, (4.27)
5+./p
and also
1 1-.4/2/3
e 1 1=V (4.28)
9%6v2(vVN+1) 8 n
Therefore
) , 1 2 1 1
(1=nyp)” —4p/p > (1—np) —§>§—5=g«

Use this and definition of y given by (4.22).

4(/uN +2)/p
(1—np) —4pp’

since by assumption (4.28), we have u < 2. Thus Condition 5 is satisfied. By definition of 8 and ¢ given by (4.23) and
(4.24), Conditions 8 and 9 are satisfied trivially. Observe that (4.28) implies that

y =24V2(VN + 1)/p > 24(/uN +v2)/p >

y =24V2(VN + 1)Jp < Z. (4.29)
Moreover,
yp<M<L\/'B§@= P 5
4 4 20 207
1 1
=np(p——— (430)
VP (4n 1- nﬁ)
1
L N/ (431)
2 1-nJp
In last two lines we applied (4.27) and (4.28). Since n.,/p < 1, from (4.30),
1 1
VP < T
n 1-np

which results in ¢ — n > n and therefore by using (4.29)
a=4y <n<<¢—n.
So Conditions 10 and 11 are satisfied. Also from (4.31)

1 UNIY
S S N/
2 1-nyp
1
which results in 1 — ., /p > 5 and
nwy
———= <2uy <4y =«
1-yp

Thus Conditions 6 and 7 hold. Finally by using relations between constants and definition of a in (4.26), Condition 3 is
satisfied.

5. Conclusion

In the first part of this paper, we gave a superlinear convergence theory for the solution of a system of nonlinear
equations by the basic Broyden’s method assuming Kantorovich-type assumptions, i.e., all assumptions are about the
initial iterate and its neighbourhood. The main point is that the assumptions can be verified in practice, and the existence
of a root and the convergence rate are consequences of the theory. In the second part, we gave a superlinear convergence
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theory for the minimizer of a uniformly convex function by the basic BFGS algorithm employing Kantorovich-type
assumptions. Both our theories are simple in the sense that they contain as few constants as possible.

Our theory is a local theory. Extension to a global theory is possible if line search is incorporated into the algorithms.
This is certainly a worthy future work.

As a continuation of this paper, [12] has shown superlinear convergence of a class of nonlinear conjugate gradient
methods and a class of scaled memoryless BFGS algorithms using Kantorovich-type assumptions. There are many other
directions for further research. For instance, the Jacobian matrix for a nonlinear system or the Hessian in the case of
unconstrained minimization may be sparse or may have a special structure. [13] has a convergence theory for quasi-
Newton methods which maintains the sparsity or special structure. A similar result using Kantorovich-type assumptions
would be desirable. Another possible future work is to relax the condition that the Jacobian matrix about the initial point is
non-singular, or the condition that the Hessian of the objective function is positive definite. See [ 14] for some early work in
this direction. Next, two convergence theories for functions which are not smooth can be found in [15] and [16]. It would
be desirable to extend these results for the case of Kantorovich-type assumptions. Smale gives an amazing convergence of
Newton'’s iteration where all assumptions are at the initial iterate—no assumption is necessary in a neighbourhood about
the initial iterate. See Chapter 8 in [17]. This theory has been extended to a secant method in [18]. It appears to be an
open problem whether this theory carries over to Broyden’s method and BFGS algorithm.
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