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Appendix 2:  Field Programmable Gate Arrays: An Intro

2.1 Introduction:

•Field Programmable Gate Arrays and related dev
revolutionizing microelectronic system design.

•This appendix provides an overview of FPGA tech

2.2 Basic Technologies

•There are basically two divisions which separate F
technology level.

•These are one-time programmable and reprogram

•The one-time programmable devices are non-volat
even when the device is powered down.

•On the reprogrammable side there are devices th
EEPROM (Flash), and SRAM technologies.

1. These notes are approximately 10 years 6 years ago :) old but they are still not bad.
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Figure 17  One-time and Reprogrammable FPGAs

•Just to add to the confusion there are/were also o
devices that are based on EPROM technology with
economic. In these cases it makes more sense to d
more expensive package (e.g. ceramic with a quart
reprogramming and committing to a more inexpen
production. (Largely replaced by FLASH)

•Many of the basic ideas behind FPGAs can be fou
back many years and in a variety of forms. Early re
wafer scale integration looked at a variety of conne
ranged from laser interconnection schemes to elec

FPGAs

One-Time Programmable Reprogramm

Fuse Antifuse SRAM

EPROM
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•In addition, as engineers added flexibility to commo
inherently more programmable.

•The widespread use of PALs throughout the eightie
the role of programmable logic in system integration

•Also traditional gate arrays contributed in a signific
development of FPGAs.

•Traditional gate arrays consist of uncommitted
resources that are connected up by the ASIC d

•In a similar manner an FPGA consists of uncomm
resources that are connected by the FPGA-ASIC d

•One of the main differences is that design custom
takes place at a mask level in the manufacturing p
customization for an FPGA takes place electronica

•The following table contrasts FPGAs with more tra

•The raw number of gates available today (2002) a
FPGA technology has been so successful.

•2006 has FPGAs that are really SoC devices. (Inc
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•Table 1 roughly compares FPGAs and GAs.
•One thing that is evident is that the traditional ASIC
changed and that field programmable devices are a
change.

•Although FPGAs often utilize extremely aggressive
technology it is unlikely that they will ever compare 
"state of the art" mask programmable gate arrays o

Table 1  FPGA - Gate Array Comparison (1993, still sort of relatively tru

Category FPGA Gate Array Comment 2

Gate Count O(10K) O(100K) Order of Magni-
tude

NRE  <$10,000 ~$100,000 Order of Magni-
tude

Even
GAs

Performance
System Clock

<50MHz <150MHz Factor of 2

Design Tools Full Suite Full Suite pc -> workstation

Programmability Field Factory ms vs. month

Development Time Weeks Months

Design Revision Easy Hard ($$)
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•This is due to the fact that some silicon area overh
making the device programmable.

•As such it is hard to achieve the same density.

•This overhead can be substantive and also affects 
devices can run at.

•Bigger generally means slower.

•Also an FPGA is somewhat constrained in terms of
efficiently.

•An FPGA may require a different modus operandi. 
may preferably be encoded one-hot as opposed to m
at one time anyway)
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•Figure 18 illustrates simple interconnections diagra
masked interconnect, fused link, and a pass gate in

Figure 18  Silicon Overhead for Programmable Gate Arrays

Masked Programmable Gate Array Dir
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Fused (Antifuse) Field Programmab

Fused Region

Shared Programming Transistors

nmos pass transistor
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SRAM Storage Cell

Reprogrammable Field Programmab

One-Time Programmable
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•For example the number of bits to program the XC

•Although Figure 18 is highly schematic in nature i
basic trade-offs among field programmable devices
directly effect performance.

•The most common model for first order performanc
derived from lumped element models of transistors 

•The masked programmable interconnect would hav
parasitic capacitance as well as resistance as comp
FPGA devices illustrated.

2.2.1 Antifuse Devices

•One  family of FPGAs are based on "antifuses", w
term used for two materials that are "fused" togeth

•Typically, a dielectric with a very high resistivity is s
two conductive interconnect segments.

•The sandwich is then stressed with an applied volta
down the dielectric thereby connecting the two segm

•The dielectric sandwich must have a sufficiently hig
such that connections are not created during norma
not require an enormous voltage that would break-do
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or isolating dielectrics.

•A decoding scheme is required such that the applie
the antifuse we want to program.

•This can be accomplished by decoding the transisto
18 , tieing one of the segments at ground and the oth
voltage (Vp).

•All other segments during programming would be h
intermediate voltage (e.g.  Vp/2) such that any othe
programmable connection would only see Vp/2 volt

•Devices which employ antifuse technology are one
non-volatile.

•Non-volatile devices offer the advantage of not hav
upon power-up.

2.2.2 SRAM Devices

•Perhaps the most popular type of FPGAs are thos
technology to maintain device configuration.

•Although larger and slower than masked program
offer considerable advantage due to their inherent 

•As illustrated in Figure 18, two segments are conn
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transistor whose state is determined by a cross co

•This latch would be configured as part of a large s
device is being programmed.

•As with the antifuse devices the CMOS processin
with some fine tuning associated with the pass gat
example, the nmos pass gate processing may be m
threshold voltage degradation is seen when passin

•One of the immediate advantages of configuring th
array is that only a small number of I/O pins are req
device.

2.3 Common Features of FPGAs

•There are several features common to all FPGAs;
and interconnect. The basic architecture of the ant
are illustrated in Figure 19.

•Programmable I/O allows the designer to specify 
input, output, or bi-directional port.

•There may be several other programmable options
direct control such as configuring pull-up devices an
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•Assignments of I/O pins is often accommodated on
explicitly specified when placing and routing the des

•In most cases a design can be more efficiently plac
are not made location specific giving the automated
more flexibility in optimizing the "layout".

•In many proto-typing applications however the des
predetermined I/O.

•This is also true of any designs that need to be mo

•That is the PCB already has specific traces that co

•There is a chance however that steadily improving 
it possible to add or modify the function once in the 

•This was realted to an early miltiary example I had
was relatively happy that the tools could only popula
capacity. This may accomodate design changes in th
was required in the future the new and improved too
make use of 60-70% of the FPGA without a physica
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Figure 19  Typical Architectures of Antifuse and SRAM FPGAs
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•Programmable interconnect is also common to all

•Implementations vary but the basic notion is to be
logic modules and logic modules together.

•Interconnect resources may also include a hierarc
allowing one to take advantage of local connection
for the distribution of global signals.

•There is always a trade-off between silicon area d
area dedicated for logic.

•As FPGAs are very general purpose devices they
applications which may be either logic or routing in

•There are however a wide variety of alternatives o
devices as well as an increasing number of device

•The final common element to all FPGAs are the lo
With the antifuse devices they are typically MUX ba
devices they are typically look-up table devices. In
provisions for sequential elements such as latches

•Figure 20 illustrates schematically a logic cell imp
function in both an antifuse and SRAM technology
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Figure 20  Logic Implementations in Antifuse and SRAM Technologie
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2.4 Applications of FPGAs

•Field programmable gate arrays are finding a vari
wide number of areas primarily due to their flexibili

•The following lists several areas where FPGAs ar
important role. This list is only representative and e
engineering creativity.

2.4.1 Logic Integration

•In many cases there is an opportunity to migrate a
small and medium scale integration to FPGAs. It m
to a masked gate array but the economics of a mo
allow for the deign to be migrated to FPGAs.

•The flexibility of being able to design and prototyp
design may also lead to improvements in design a

•With the relatively low cost of FPGAs additional fea
evaluated and integrated into the product if desired

•This may prove to be very efficient as interfaces co
spectrum of "standards".

2.4.2 Rapid Prototyping

•With increased emphasis on expeditious system d
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to market FPGAs are and will continue to play a m

•FPGAs allow for rapid hardware design revisions 
risk of waiting several months and several 100s of 
first-time correct silicon. This is particularly importa
standards are either evolving rapidly or don’t yet ex

2.4.3 System Level Testing

•System level testing is in part the functional and s
microelectronic product.

•FPGAs and in particular reprogrammable devices
designer the resources that may not otherwise be 
feasible in other technologies.

•Boundary scan is one example where FPGAs are v
test.

•For example, with respect to PCB testing the desig
utilize the boundary scan resources available from t

•The advantage of developing ones own scheme is 
flexibility of boundary scan. For example, in testing 
become a boundary scan master in effect interfacin
boundary scan test environment.

•Pattern generators and signature analyzers may be
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providing patterns to test the board at-speed as wel
responses.

•Application specific test programs such as testing m
memory access time may be developed to allow the
test a non-boundary scan compliant memory device
such as walking ones or march test.

•These types of hardware overheads would be diffic
majority of products if the overhead were to remain re
of a reprogrammable FPGA here is that these test p
in memory and used as required. Once these tests a
can in many cases be reconfigured to eliminate the 

2.4.4 In Field Modification, Repair and Updating

•In a similar manner to that of system level testing 
considerable advantage in being able to be reconfig
case of an antifuse device reprogramming the dev
revisions or modifications.

•Again the advantage of the reprogrammable devic
field repair in a remote manner. The basic idea is for
login to the user’s product, run a series of diagnost
the system by reconfiguring the hardware by down
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configuration bit stream.

•This is a more likely scenario in a telecom applica
product is part of its system features. The cost of s
company is definitely more if an engineer or technic
call as opposed to repair from and engineers desk
product in several cities in one day without ever lea

2.4.5 Hardware Software Co-design

•FPGAs offer an exciting opportunity in the area of
design as they do in rapid prototyping environment
distinction of hardware and software somewhat blu

•The advantage is that there is increased opportun
hardware and software to be more concurrent as o
engineers developing the hardware first and the so
code for essentially fixed hardware.

•This does not make the problem simpler but gains
expedite product development. In addition, implem
specifications do not have to be cast in stone during
system design.

2.4.6 Dynamic Reconfiguration
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•Dynamic reconfiguration applies essentially to re-
However, the overhead associated with changing a
be considered.

•For the serial SRAM based devices reconfiguratio
milliseconds.

•This overhead would have to be justified as a hard
would be desirable to be able to reconfigure the har
cycle.

•Duty cycle time may be used to download the devic
should proceed quickly. The SRAM based devices c
if shadow registers were employed.

•There is also a question of application and econom
be addressed by the FPGA vendor as schemes su
would consume considerable silicon realistic.

2.4.7 Application Specific Co-Processors

•Application specific co-processors are devices co
such as a workstation. These co-processor boards
for specific operations which are more easily perfo
although un-economical to be resident hardware.

•As an example, there are many operations which a
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in Genetic Algorithms that can be off-loaded to a re
board that would speed operations such as string c
copying.

•There are other applications in number sieving tha
reprogrammable hardware as a co-processor. Artifi
represents another area where various application
topologies and where reprogrammablility would be

•The nice thing about a reprogrammable co-proces
potential use in several application areas that on th
dedicated co-processor. Another reprogrammable 
interface card that supports a wide variety of interfa

2.5 More Field Programmable Devices

•There are a number of relatively new devices that
will emerge over the next few years.

2.5.1 Analog Field Programmable Devices

•In a similar manner to digital gate arrays and subs
FPGAs will also become available following analog
basic question remain such as the mode of operat
provide basic building blocks such as operation am
programmable interconnect, resistors and capacito
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fundamental blocks such as current mirrors and co
considerable value in prototyping.

2.5.2 Field Programmable Interconnect Devices (species now extinct I think)

•A relatively new comer to field programmable dev
programmable interconnect devices. These device
pin-out devices which when configured connect va

•Examples of programmable interconnect devices 
Aptix and I-Cube.  Although applications are just e
clear that they could play a role in proto-type devel
hardware emulators.

•One of the advantages for microelectronic proto-ty
PCB such that FPGAs could place and routed witho
I/O. This typically allows the automated FPGA place
efficiently utilize available logic and routing resourc

•Configuring the I/O would then become the respo
programmable interconnect device. Similarly the u
interconnect in applications where in-service repai
attractive application.
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2.5.3 Asynchronous Field Programmable Arrays

•Although most microelectronic systems rely on sy
clocking there is an increasing interest in asynchro

•It is inherently more difficult to design and test asy
there are also several advantages associated with
speed that make asynchronous devices very attrac
considerable research in synthesis and formal veri
asynchronous design more attractive.

•It is not unreasonable that an FPGA would fundam
such as arbitors, micropipelines, and C-elements b
available.

•There have been several efforts where commercia
utilized for asynchronous designs with a logical ex
commercially available FPGAs with fundamental a
blocks.
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2.6 Research Areas

•There are an increasing number of research areas
field programmable devices.

•These range from improving synthesis methods ta
improving the basic architectures associated with l
resources, improving place and route tools, basic r
devices and technologies.

•Figure 21 illustrates a modeling and prototyping e
FPGAs in the design cycle.

•These basic ideas are currently being roled out as
initiatives.

The most interesting thing about FPGAs is tha
lack of commitment until properly programmed
relationships.
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Figure 21  Research and Education FPGA Proto-typing Environment (early/m
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	• An FPGA may require a different modus operandi. E.g. a state machine may preferably be encoded ...
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	• One family of FPGAs are based on "antifuses", which is an unfortunate term used for two materia...
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	• Programmable interconnect is also common to all FPGAs.
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	• For example, with respect to PCB testing the designer may develop or utilize the boundary scan ...
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	• In a similar manner to that of system level testing FPGAs offer a considerable advantage in bei...
	• Again the advantage of the reprogrammable device is the potential of in- field repair in a remo...
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	2.4.5 Hardware Software Co-design
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