# EVAPORITE SEDIMENTOLOGY 7780 Course Outline Fall Term

FOR THE MESSAGE OF YOUR LIFE!

#### Instructor:

William M. Last (office: 228 Wallace Bldg.; office hours: 8:30-9:30 Tuesday, Thursday, or by appointment; Office telephone: 474-8361;

E-mail: <u>WM Last@UManitoba.ca</u>)

## Meeting time:

First term; Tentatively scheduled for 8:30-9:20, MWF; 243 Wallace Building

## Laboratory:

There is no formal organized laboratory session, however individual research projects may be assigned which will require use of basic and advanced level sedimentological laboratory equipment and facilities, either as a group or on individual basis.

## Field Trip:

This component of the course will be <u>required of all participants</u>. Dates of the field trip are (tentative; weather dependent) <u>September 7-12</u>. PLEASE SEE WML FOR DETAILS. All field trip costs, including vehicle rental, lodging, food and supplies are to be covered by the participants.



#### **Course Format:**

This course involves weekly seminar/discussion meetings and/or lectures. Depending on the number of participants, there will normally be two student-presented seminars per week followed by extended discussion of the particular topic. Details about the seminar format and topics will be discussed at the first organizational meeting. A comprehensive 'term project' will be required. Samples and data collected in the field will form the basis of this term project.

#### Textbook:

There is no formally required textbook for this course. I will assume everyone is *already* reasonably familiar with the contents of *Sedimentary Environments: Processes, Facies and Stratigraphy* (H. G. Reading, editor; 3<sup>rd</sup> Edition; 1996) and *Facies Models: Response to Sea Level Change* (R. G. Walker & N. P. James, editors; 1992).

## **Grading:**

The grade for this course is based on weekly assignments (25%), term project (50%), and seminars & seminar discussion participation (25%).

The last date for voluntary withdrawal from the course without academic penalty is *November 16, 2005.* I am instructed by ROASS policy to advise you to read the academic regulations and policies in the 2005-2006 University Graduate Calendar. In particular, be aware of the policies regarding academic dishonesty, including "plagiarism and cheating", "examination impersonation", and "attendance and debarment".

## **Policy for Late Assignments & Projects**

Late assignments, projects, and reports will not be accepted.

## **TENTATIVE Course Content & Topic Outline:**

(not in order of coverage; the specific topics covered during 2005 may vary depending on the interest of the participants)

## 1. Genesis of Evaporites

#### 1.1 Introduction

Facies relationships and statistical analyses; associations and sequences Facies modelling of chemical sediments

Pitfalls of interpreting depositional settings/environments using wireline logs Sedimentary structures: use and interpretation in cores; in outcrop; review of nature of stratification in evaporites; classification of internal structures, organic structures, deformational structures, inorganic structures

## 1.2 Review of Process Controlled Genetic Units in Evaporite Sedimentology

Lateral versus vertical accretion

Classic versus modern stratigraphic principles

Classification of environments and processes

#### 1.3 Brines

Origin and migration of sedimentary brines

Geochemical complications and thermodynamics

Chemical and physical properties of brines

Flow regimes and fluid mechanics of high salinity brines

Brine evolution

## 1.4 Continental Settings

Lacustrine evaporites

Groundwater-generated evaporites & pedogenic deposits

Other continental settings (e.g., evaporites in caves, surface

efflorescences)

### 1.5 Marine & Marginal Marine Settings

Sabkhas

Marine marginal lagoons

Other marine marginal settings

Deep water evaporites

The saline giants

## 1.6 Other settings

Martian evaporites

## 2. Composition of Selected Evaporites

## 2.1 Evaporitic carbonates

'mesosaline'/vitasaline carbonates

evaporitic & microbial dolomite formation & models

aragonite, Mg-calcite, monohydrocalcite

magnesite, hydromagnesite and other Mg-carbonates

Na-carbonates

other important evaporitic carbonates

#### 2.2 Halides

Halite

Sylvite

#### 2.3 Sulfates

Simple sulfates

Compound sulfates

The sulfate problem in marine evaporites

- 2.4 Borates
- 2.5 Nitrates
- 2.6 Silicates

The magadiite/sepiolite dilemma

#### 2.7 Trace element & Isotopic considerations

#### 3. Diagenesis of Evaporites

Primary versus secondary precipitation

Role of pore fluids

Secondary sulfates

Salt inclusion studies

Texture and fabric studies

Salt tectonics

#### 4. Evaporites as a Resource

Salt

Potash

Gypsum and anhydrite

Other sulfates and carbonates

Borates
Zeolites
Hydrocarbons and evaporites
Ore forming solutions, geothermal systems and evaporites
Salt dome mineral resources

# 5. Basin Analysis

Basin-wide evaporites
Models of evaporite basins
Depth estimates
Sequence stratigraphic considerations