DATE: March 14, 2016 COURSE: <u>MATH 2150</u>

NAME:

STUDENT # : _____

Q1 [10]	Q2 [10]	Q3 [10]	Q4 [10]	Q5 [10]	Total $[50]$

[10] 1. Find maximum and minimum values of the function f(x, y, z) = 3yover the curve of intersection of the plane z = 2x - y and the ellipsoid $2x^2 + y^2 + z^2 = 12$. **Hint**: Use Lagrange multipliers.

PAGE: 2 of 5 TIME: <u>90 minutes</u> EXAMINER: <u>G.I. Moghaddam</u>

[10] 2. Let $f(x,y) = y + 3\sqrt{x^2 + y^2}$. Evaluate the double integral $\int \int_D f(x,y) dA$ where D is the region bounded by the y-axis and $x = \sqrt{2y - y^2}$.

PAGE: 3 of 5 TIME: <u>90 minutes</u> EXAMINER: G.I. Moghaddam

[10] 3. Find the area of the finite plane region bounded by the curves $y = x^3$, $y = 2x^3$, $x = y^3$ and $x = 3y^3$.

PAGE: 4 of 5 TIME: <u>90 minutes</u> EXAMINER: <u>G.I. Moghaddam</u>

[10] 4. Let *D* be the region satisfying $4x + y \ge 3$ and $2x - y \ge 0$. Determine whether the double integral $\int \int_D \frac{1}{\sqrt{x^2 + y + 1}} dA$ converges or diverges. Explain your work.

PAGE: 5 of 5 TIME: <u>90 minutes</u> EXAMINER: <u>G.I. Moghaddam</u>

[10] 5. Set up but do not evaluate the six triple iterated integrals in Cartesian coordinates for the function f(x, y, z) over the region enclosed by the surfaces $y = 1 - x^2$, z = 0 and y = z.