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Generalized Medical Instrumentation System 
 
The sensors convert energy or information from the measurand to another form of signal 
(usually electric). This signal is then processed and displayed so that humans can perceive this 
information. 
 
Characteristics of an instrument performance are usually subdivided into 2 classes on the basis 
of the frequency of the input signals: 1- Static characteristics, which describe the performance 
of instrument for dc or very low frequency inputs; 2- Dynamic characteristics, which requires 
the use of differential and/or integral equations to describe the quality of the measurements. 
 
1. Static characteristics 
 

1.1 Accuracy is the difference between the true value and the measured value/ divided by 
the true value. Since the true value is seldom available, the accepted true value or 
reference value should be treacle to the nation Instrumentation of Standards and 
Technology. Accuracy is a measure of the total error without regard to the type of the 
error. 

 
1.2 Precision of a measurement expresses the number of distinguishable alternations from 

which a result is selected.  For example, a meter that can read 2.432 V is more precise 
than 2.43 V. However, high precision doesn’t mean high accuracy! 

 
1.3 Resolution is the smallest incremental quantity that can be measured. 

 
1.4 Reproducibility is the ability of an instrument to give the same output for equal inputs 

applied over some period of time.  
 

1.5 Statistical Control- The accuracy of an instrument is not meaningful unless all factors, 
such as the environment and the method of use, are considered. Statistical control 
ensures that random variations in measured quantities that result from all factors that 
influence the measurement process are tolerable. Any systematic error or bias can be 
removed by calibration and correction factors, but random variation are more of concern. 
If the source of this variability cannot be determined, then statistical analysis must be 
used to determine the error variation.  

 
1.6 Sensitivity is the ratio of the incremental output to the incremental input quantity. The 

static sensitivity might be constant for only a part of operation. 
 

1.7 Zero Drift occurs when all the output values increase or decrease by the same absolute 
amount. The slope of sensitivity doesn’t change. It might be caused by temperature 
variation, hysteresis variation, shock or undesired forces.  

 
1.8 Sensitivity Drift is the change of the slope of the calibration curve as a result of an 

interfering and/or modifying input. It can result from manufacturing tolerances, variation 
in power supply, nonlinearities, and changes in ambient temperature and pressure.  

 
1.9 Linearity- Independent nonlinearity expresses the maximal deviation of points from the 

least squares fitted line as A% of the reading or B% of full scale, whichever is greater. 
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1.10 Input Ranges is the maximal operating range of input that doesn’t damage the 

instrument.  
 

1.11 Input Impedance in general is the ratio of the input effort (voltage, force, 
pressure) by the flow (current, velocity, flow). Biological source impedances are usually 
unknown, variable and difficult to measure and control.  

 
2. Dynamic Characteristics 
 
Most of the biological signals time-varying in nature and therefore we should make sure that the 
instrument is a time-invariant system for an accurate measurement. The dynamic characteristics 
of an instrument include its transfer function, its frequency response, and its phase or time 
delay. 



small percent-of-reading deviations near zero. All data points must fall inside
the "funnel" shown in Figure 1.4(b). For most instruments that are essentially
linear, if other sources of error are minimal, the accuracy is equal to the nonlin-
earity.

INPUT RANGES

Several maximal ranges of allowed input quantities are applicable for various
conditions. Minimal resolvable inputs impose a lower bound on the quantity
to be measured. The normal linear operating range specifies the maximal or
near-maximal inputs that give linear outputs.

The static linear range and the dynamic linear range may be different.
The maximal operating range is the largest input that does not damage the
instrument. Operation in the upper part of this range is more likely to be
nonlinear. Finally, storage conditions specify environmental and interfering
input limits that should not be exceeded when the instrument is not being
used. These ranges are not always symmetric with respect to zero input,
particularly for storage conditions. Typical operating ranges for blood-pressure
sensors have a positive bias, such as +200 mm Hg to -60 mm Hg (+26.6 to
-8.0 kPa).

INPUT IMPEDANCE

Because biomedical sensors and instruments usually convert nonelectric quan-
tities into voltage or current, we introduce a generalized concept of input
impedance. This is necessary so that we can properly evaluate the degree to
which instruments disturb the quantity being measured. For every desired
input Xd1 that we seek to measure, there is another implicit input quantity
Xd2 such that the product Xd1.Xd2 has the dimensions of power. This product
represents the instantaneous rate at which energy is transferred across the
tissue-sensor interface. The generalized input impedance Z, is the ratio of
the phasor equivalent of a steady-state sinusoidal effort input variable (voltage,
force, pressure) to the phasor equivalent of a steady-state sinusoidal flow
input variable (current, velocity, flow).

Z = Xd1= effort variable
x Xd2 flow variable (1.12)

The power P is the time rate of energy transfer from the measurement
medium.

_ _ Xal_ 2
P - Xdl.Xd2 - Z - Z,Xd2x (1.13)

To minimize P, when measuring effort variables Xdl, we should make the
generalized input impedance as large as possible. This is usually achieved by

minimizing the flow variable. However, most instruments function by measur-
ing minute values of the flow variable, so the flow variable cannot be reduced
to zero. On the other hand, when we are measuring flow variables Xd2, small
input impedance is needed to minimize P. The loading caused by measuring
devices depends on the magnitude of the input impedance IZ,Icompared with
the magnitude of the source impedance IZ,I for the desired input. Unfortu-
nately, biological source impedances are usually unknown, variable, and diffi-
cult to measure and control. Thus the instrument designer must usually focus
on maximizing the input impedance Z, for effort-variable measurement. When
the measurand is a flow variable instead of an effort variable, it is more
convenient to use the admittance Y, = 11Zx than the impedance.

1.10 GENERALIZEDDYNAMIC CHARACTERISTICS

Only a few medical measurements, such as body temperature, are constant
or slowly varying quantities. Most medical instruments must process signals
that are functions of time. It is this time-varying property of medical signals
that requires us to consider dynamic instrument characteristics. Differential
or integral equations are required to relate dynamic inputs to dynamic outputs
for continuous systems. Fortunately, many engineering instruments can be
described by ordinary linear differential equations with constant coefficients.
The input x(t) is related to the output y(t) according to the following equation:

d"y dy d"'x dxa - + . . . + al - + aoy(t ) = b - + . . . + bl - + box (t )" dt" dt '" dt'" dt (1.14)

where the constants ai (i = 0, 1, . . . , n) and bj (j = 0, 1, . . . , m) depend
on the physical and electric parameters of the system. By introducing the
differential operator Dk == dk( )/dtk, we can write this equation as

(a"D" + . . . + aiD + ao)y(t)= (b",D'"+ . . . + bID + bo)x(t) (1.15)

Readers familiar with Laplace transforms may recognize that D can be
replaced by the Laplace parameter s to obtain the equation relating the
transforms Y(s) and X(s). This is a linear differential equation, because the
linear properties stated in Figure 1.4(a) are assumed and the coefficients aj
and bj are not functions of time or the input x(t). The equation is ordinary,
because there is only one independent variable y. Essentially such properties
mean that the instrument's methods of acquiring and analyzing the signals do
not change as a function of time or the quantity of input. For example, an
autoranging instrument may violate these conditions.

Most practical instruments are described by differential equations of zero,
first, or second order; thus n = 0, 1,2, and derivatives of the input are usually
absent, so m = O.



The input x(t) can be classified as transient, periodic, or random. No
general restrictions are placed on x(t), although, for particular applications,
bounds on amplitude and frequency content are usually assumed. Solutions
for the differential equation depend on the input classifications. The step
function is the most common transient input for instrumentation. Sinusoids
are the most common periodic function to use because, through the Fourier-
series expansion, any periodic function can be approximated by a sum of
sinusoids. Band-limited white noise (uniform-power spectral content) is a
common random input because one can test instrument performance for all
frequencies in a particular bandwidth.

TRANSFERFUNCTIONS

The transfer function for a linear instrument or system expresses the relation-
ship between the input signal and the output signal mathematically. If the
transfer function is known, the output can be predicted for any input. The
operational transfer function is the ratio y(D)lx(D) as a function of the differen-tial operator D.

y(D) _ bmDm+ . . . + biD + bo
xeD) - a"D" + . . . + aiD + ao (1.16)

This form of the transfer function is particularly useful for transient inputs.
For linear systems, the output for transient inputs, which Occur only once and
do not repeat, is usually expressed directly as a function of time, yet), which
is the solution to the differential equation.

The frequency transferfunction for a linear system is obtained by substitut-ing jw for D in (1.16).

Y(jw) bm(jw)m+ . . . + bl(jw) + bo
X(jw) = all(jw)1I+ . . . + al(jw) + ao (1.17)

where j = +v=T and w is the angular frequency in radians per second. The
input is usually given as x(t) = Ax sin (wt), and all transients are assumed to
have died out. The output yet) is a sinusoid with the same frequency, but the
amplitude and phase depend on w; that is, yet) = Sew) sin [wt + I/>(w)].The
frequency transfer function is a complex quantity having a magnitude that is
the ratio of the magnitude of the output to the magnitude of the input and a
phase angle I/> that is the phase of the output yet) minus the phase of the
input x(t). The phase angle for most instruments is negative. We do not usually
express the output of the system as yet) for each frequency, because we know
that it is just a sinusoid with a particular magnitude and phase. Instead,
the amplitude ratio and the phase angle are given separately as functionsof frequency.

-

The dynamic characteristics of instruments are illustrated below by exam-
ples of zero-, first-, and second-order linear instruments for step and sinusoi-
dal inputs.

ZERO-ORDERINSTRUMENT

The simplest nontrivial form of the differential equation results when all the
a's and b's are zero except aoand boo

aoy(t) = box(t) (1.18)

This is an algebraic equation, so

y( D ) Y (J'w ) bo K
. . . .

- = - = - = = static sensItiVity
xeD) X(jw) ao

where the single constant K replaces the two constants ao and booThis zero-
order instrument has ideal dynamic performance, because the output is propor-
tional to the input for all frequencies and there is no amplitude or phase dis-
tortion.

A linear potentiometer is a good example of a zero-order instrument.
Figure 1.5 shows that if the potentiometer has pure uniform resistance, then
the output voltage yet) is directly proportional to the input displacement x(t),
with no time delay for any frequency of input. In practice, at high frequencies,
some parasitic capacitance and inductance might cause slight distortion. Also,
low-resistance circuits connected to the output can load this simple zero-
order instrument.

(1.19)

FIRST-ORDERINSTRUMENT

If the instrument contains a single energy-storage element, then a first-order
derivative of yet) is required in the differential equation.

al d~~t) + aoy(t) = box(t)

This equation can be written in terms of the differential operator D as

(1.20)

(rD + l)y(t) = Kx(t) (1.21)

where K = bolao = static sensitivity,and r = al/ao= time constant.
Exponential functions offer solutions to this equation when appropriate

constants are chosen. The operational transfer function is
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Figure 1.5 (a) A linear potentiometer, an example of a zero-order system.
(b) Linear static characteristic for this system. (c) Step response is proportional
to input. (d) Sinusoidal frequency response is constant with zero phase shift.
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Figure1.6 (a) A low-passRC filter, an example of a first-order instrument.
(b) Static sensitivity for constant inputs. (c) Step response for large time
constants (Td and small time constants (TS)'(d) Sinusoidal frequency response
for large and small time constants.
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and the frequency transfer function is

Y Ow) _ K K
X(jw) - 1 + jWT= VI + ,..2.,.2/<I>= arctan (-WTIl) (1.23)

y(t) = K (1 - e-11r)
(1.24)

The smaller the time constant, the faster the output approaches the input.
For sinusoids, (1.23) and Figure 1.6(d) show that the magnitude of the output
decreases as frequency increases. For larger time constants, this decrease
occurs at lower frequency.

When W = liT, the magnitude is 1/\1'2 = 0.707 times smaller, and the
phase angle is -45°. This particular frequency w is known as the corner, cutoff,
or break frequency. Figure 1.6(d) verifies that this is a low-pass filter; low-
frequency sinusoids are not severely attenuated, whereas high-frequency sinu-
soids produce very little output voltage. The ordinate of the frequency-
response magnitude in Figure 1.6(d) is usually plotted on a log scale and may
be given in units of decibels (dB), which are defined as dB = 20 10gIOIY(jw)/

The RC low-pass filter circuit shown in Figure 1.6(a) is an example of a
first-order instrument. The input is the voltage x(t), and the output is the
voltage y(t) across the capacitor. The first-order differential equation for this
circuit is RC[dy(t)/dt] + y(t) = Kx(t). The static-sensitivity curve given in
Figure 1.6(b) shows that static outputs are equal to static inputs. This is verified
by the differential equation because, for static conditions, dy/dt = O.The step
response in Figure 1.6(c) is exponential with a time constant T = RC.
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X(jw)/. A mercury-in-glass thermometer is another example of a low-passfirst-order instrument.

EXAMPLE1.1 A first-order low-pass instrument has a time constant of 20
ms. Find the maximal sinusoidal input frequency that will keep output error
due to frequency response less than 5%. Find the phase angle at this frequency.
ANSWER

Y(jw) K

X(jw) :=:1 + jwr

I

K

I
:=: K :=:0 95K

1 + jwr VI + w2r2 .

(w2r2+ 1)(0.95)2:=:1

2_ 1 - (0.95)2
w - (0.95)2(20 X 10-.1)2

W :=:16.4 rad/s

w

f:=: 27T:=:2.62 Hz

(
-wr

)1>:=:tan-II:=: -18.2°

If Rand C in Figure 1.6(a) are interchanged, the circuit becomes another
first-order instrument known as a high-pass filter. The static characteristic is
zero for all values of input, and the step response jumps immediately to the
step voltage but decays exponentially toward zero as time increases. Thus
yet) :=:Ke-tiT.Low-frequency sinusoids are severely attenuated, whereas high-
frequency sinusoids are little attenuated. The sinusoidal transfer function is
Y(jw)/X(jw) :=:jwr/(l + jwr).

SECOND-ORDERINSTRUMENT

An instrument is second order if a second-order differential equation is re-
quired to describe its dynamic response.

d2y(t) + a dy(t) + aoy(t) :=: box (t)a2 dt2 I dt (1.25)

Many medical instruments are second order or higher, and low pass.
Furthermore, many higher-order instruments can be approximated by sec-
ond-order characteristics if some simplifying assumptions can be made. The

four constants in (1.25) can be reduced to three new ones that have
physical significance:

[
D2 + 2(D + 1

]
yet) :=: Kx(t)

w~ Wn
(1.26)

where

K :=: bo :=: static sensitivity, output units divided by input units
ao

~o
wn:=: - :=: undamped natural frequency, rad/s

a2

( :=: . ~ :=: damping ratio, dimensionless
2 v aoa2

Again exponential functions offer solutions to this equation, although the
exact form of the solution varies as the damping ratio becomes greater than,
equal to, or less than unity. The operational transfer function is

y(D) _ K

xeD) - D2+ 2(D + 1
w~ Wn

(1.27)

and the frequency transfer function is

Y(jw)_ K
X(jw) - (jw/ Wn)2+ (2(jw/ wn) + 1

K

V[l - (W/Wn)2]2+ 4(2W2/W~

2(
1>:=:arctan w/wn - wn/w

(1.28)

A mechanical force-measuring instrument illustrates the properties of a
second-order instrument (Doebelin, 1990). Mass, spring, and viscous-damping
elements oppose the applied input force x(t), and the output is the resulting
displacement yet) of the movable mass attached to the spring [Figure 1.7(a)].
If the natural frequency of the spring is much greater than the frequency
components in the input, the dynamic effect of the spring can be included by
adding one-third of the spring's mass to the mass of the moving elements to
obtain the equivalent total mass M.

Hooke's law for linear springs is assumed, so the spring constant is Ks. Dry
friction is neglected and perfect viscous friction is assumed, with constant B.
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Figure 1.7 (a) Force-measuring spring scale, an example of a second-order
instrument. (b) Static sensitivity. (c) Step response for overdamped case (==
2, critically damped case ( ==1, underdamped case ( ==0.5. (d) Sinusoidal
steady-state frequency response, ( ==2, ( ==1, ( ==0.5. [Part (a) modified
from Measurement Systems: Application and Design, by E. O. Doebelin.
Copyright @ 1990 by McGraw-Hill, Inc. Used with permission of McGraw-
Hill Book Co.]

To eliminate gravitational force from the equation, we adjust the scale
until y == 0 when x == O. Then the sum of the forces equals the product of
mass and acceleration.

x (t) - B dy(t) - K y(t) == M d2y(t)dt s df (1.29)

This equation has the same form as (1.26) when the static sensitivity, undamped
natural frequency, and damping ratio are defined in terms of Ks, B, and M,
as follows:

K = 11Ks

Wn == YKs/M

(1.30)

(1.31)

--

B

~==2VKmM

(1.32)

The static response is y(t) == Kx (t), as shown in Figure 1.7(b). The step
response can have three forms, depending on the damping ratio. For a unit-
step input, these three forms are

Overdamped, ~ > 1:

t == _ ~+ ~ Ke(-(+V'(-l)w,r+ (- ~ Ke(-(-v'('-I)w,1 + K
y() 2~ 2~

(1.33)

Critically damped, ~ ==1:

y(t) ==-(1 + wnt)Ke-W,l+ K
(1.34)

Underdamped, ~ < 1:

e-'Wn'
y(t) = - ;:;--;;2 K sin (Vf="12 wnt + cf» + K

, 1 - (2

cf>== arcsin Vf="12

Examples of these three step responses are represented in Figure 1.7(c). Only
for damping ratios less than unity does the step response overshoot the final
value. Equation (1.35) shows that the frequency of the oscillations in the

underdVPed response in Figure 1.7(c) is the damped natural frequencyWd == Wn 1 - ~2.A practical compromisebetween rapid rise time and minimal
overshoot is a damping ratio of about 0.7.

(1.35)

EXAMPLE1.2 For underdamped second-order instruments, find the damp-
ing ratio ( from the step response.

ANSWER To obtain the maximums for the underdamped response, we take
the derivative of (1.35) and set it to zero. For « 0.3 we approximate positive
maximums when the sine argument equals 37T/2,77T/2,and so forth. This
occurs at

37T/2 - cf>t =
II WnVf="12

77T/2- cf>

tll+1= wnVf="12

(1.36)and

The ratio of the first positive overshoot YIIto the second positive overshoot
YII+1[Figure 1.7(c)] is



(
K

)( { [
(31T/2 - rj»

J})Yn = ~ exp -twn wn~
Yn+1

( K

)(exp
{

_ tWn
[

(71T/2 - rj»

J})~ Wn~

= exp( 21Tt )~
I (Yn )- A _ 21Tt
n Yn+1 - - VI _ t2

(1.37)

where A is defined as logarithmic decrement. Solving for t yields

At=-
V41T2 + A2 (1.38)

For sinusoidal steady-state responses, the frequency transfer function
(1.28) and Figure 1.7(d) show that low-pass frequency responses result. The
rate of decline in the amplitude frequency response is twice the rate of that
decline for first-order instruments. Note that resonance phenomena can occur
if the damping ratio is too small. Also note that the output phase lag can be
as much as 180°, whereas for single-order instruments, the maximal phase lagis 90°.

TIME DELAY

Instrument elements that give an output that is exactly the same as the input,
except that it is delayed in time by Td, are defined as time-delay elements. The
mathematical expression for these elements is

yet) = Kx(t - Td), t> Td
(1.39)

These elements may also be called analog delay lines, transport lags, or dead
times. Although first-order and second-order instruments have negative phase
angles that imply time delays, the phase angle varies with frequency, so the
delay is not constant for all frequencies. For time delays, the static characteris-
tic is the constant K, the step response is specified by (1.39), and the sinusoidal
frequency response for magnitude and phase is

Y(jw) = Ke-jwTd
X (jw) (1.40)

Time delays are present in transmission lines (electric, mechanical, hydrau-
lic blood vessels, and pneumatic respiratory tubing), magnetic tape recorders,

.

and some digital signal-processing schemes. Usually these time delays are to
be avoided, especially in instruments or systems that involve feedback, because
undesired oscillations may result.

If the instrument is used strictly for measurement and is not part of a
feedback-control system, then some time delay is usually acceptable. The
transfer function for undistorted signal reproduction with time delay becomes
Y(jw)/X(jw) = K /- WTd' Our previous study of time-delay elements shows
that the output magnitude is K times the input magnitude for all frequencies
and that the phase lag increases linearly with frequency.

The transfer-function requirements concern the overall instrument trans-
fer function. The overall transfer function of linear elements connected in
series is the product of the transfer functions for the individual elements.
Many combinations of nonlinear elements can produce the overall linear
transfer function required. Various forms of modulation and demodulation
are used, and unavoidable sensor nonlinearities can sometimes be compen-
sated for by other instrument elements.

1.11 DESIGNCRITERIA

As shown, many factors affect the design of biomedical instruments. The
factors that impose constraints on the design are of course different for each
type of instrument. However, some of the general requirements can be catego-
rized as signal, environmental, medical, and economic factors. Figure 1.8shows
how these factors are incorporated into the initial design and development
of an instrument.

Note that the type of sensor selected usually determines the signal-pro-
cessing equipment needed, so an instrument specification includes more than
just what type of sensor to use. To obtain a final design, some compromises
in specifications are usually required. Actual tests on a prototype are always
needed before final design decisions can be made. Changes in performance
and interaction of the elements in a complex instrument often dictate design
modifications. Good designs are frequently the result of many compromises
throughout the development of the instrument. In Chapter 2, we shall examine
basic methods of sensing biomedical quantities to ensure that many sensor
design alternatives are considered.

1.12 COMMERCIALMEDICALINSTRUMENTATION
DEVELOPMENTPROCESS

A commercial medical instrument project has many phases, and the size of
the team needed grows as the project progresses. Ideas often come from
people working where health care is delivered, because clinical needs are most
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