Generalized Medical Instrumentation System

The sensors convert energy or information from the measurand to another form of signal
(usually electric). This signal is then processed and displayed so that humans can perceive this
information.

Characteristics of an instrument performance are usually subdivided into 2 classes on the basis
of the frequency of the input signals: 1- Static characteristics, which describe the performance
of instrument for dc or very low frequency inputs; 2- Dynamic characteristics, which requires
the use of differential and/or integral equations to describe the quality of the measurements.

1. Static characteristics

1.1 Accuracy is the difference between the true value and the measured value/ divided by
the true value. Since the true value is seldom available, the accepted true value or
reference value should be treacle to the nation Instrumentation of Standards and
Technology. Accuracy is a measure of the total error without regard to the type of the
error.

1.2 Precision of a measurement expresses the number of distinguishable alternations from
which a result is selected. For example, a meter that can read 2.432 V is more precise
than 2.43 V. However, high precision doesn’t mean high accuracy!

1.3 Resolution is the smallest incremental quantity that can be measured.

1.4 Reproducibility is the ability of an instrument to give the same output for equal inputs
applied over some period of time.

1.5 Statistical Control- The accuracy of an instrument is not meaningful unless all factors,
such as the environment and the method of use, are considered. Statistical control
ensures that random variations in measured quantities that result from all factors that
influence the measurement process are tolerable. Any systematic error or bias can be
removed by calibration and correction factors, but random variation are more of concern.
If the source of this variability cannot be determined, then statistical analysis must be
used to determine the error variation.

1.6 Sensitivity is the ratio of the incremental output to the incremental input quantity. The
static sensitivity might be constant for only a part of operation.

1.7 Zero Drift occurs when all the output values increase or decrease by the same absolute
amount. The slope of sensitivity doesn’t change. It might be caused by temperature
variation, hysteresis variation, shock or undesired forces.

1.8 Sensitivity Drift is the change of the slope of the calibration curve as a result of an
interfering and/or modifying input. It can result from manufacturing tolerances, variation
in power supply, nonlinearities, and changes in ambient temperature and pressure.

1.9 Linearity- Independent nonlinearity expresses the maximal deviation of points from the
least squares fitted line as A% of the reading or B% of full scale, whichever is greater.



1.10 Input Ranges is the maximal operating range of input that doesn’t damage the
instrument.

1.11 Input Impedance in general is the ratio of the input effort (voltage, force,
pressure) by the flow (current, velocity, flow). Biological source impedances are usually
unknown, variable and difficult to measure and control.

2. Dynamic Characteristics

Most of the biological signals time-varying in nature and therefore we should make sure that the
instrument is a time-invariant system for an accurate measurement. The dynamic characteristics
of an instrument include its transfer function, its frequency response, and its phase or time
delay.



small percent-of-reading deviations near zero. All data points must fall inside
the “funnel” shown in Figure 1.4(b). For most instruments that are essentially
linear, if other sources of error are minimal, the accuracy is equal to the nonlin-
earity.

INPUT RANGES

Several maximal ranges of allowed input quantities are applicable for various
conditions. Minimal resolvable inputs impose a lower bound on the quantity
to be measured. The normal linear operating range specifies the maximal or
near-maximal inputs that give linear outputs.

The static linear range and the dynamic linear range may be different.
The maximal operating range is the largest input that does not damage the
instrument. Operation in the upper part of this range is more likely to be
nonlinear. Finally, storage conditions specify environmental and interfering
input limits that should not be exceeded when the instrument is not being
used. These ranges are not always symmetric with respect to zero input,
particularly for storage conditions. Typical operating ranges for blood-pressure
sensors have a positive bias, such as +200 mm Hg to —60 mm Hg (+26.6 to
—8.0 kPa).

INPUT IMPEDANCE

Because biomedical sensors and instruments usually convert nonelectric quan-
tities into voltage or current, we introduce a generalized concept of input
impedance. This is necessary so that we can properly evaluate the degree to
which instruments disturb the quantity being measured. For every desired
input X, that we seek to measure, there is another implicit input quantity
Xz such that the product X, - X, has the dimensions of power. This product
represents the instantaneous rate at which energy is transferred across the
tissue—sensor interface. The generalized input impedance Z, is the ratio of
the phasor equivalent of a steady-state sinusoidal effortinput variable (voltage,
force, pressure) to the phasor equivalent of a steady-state sinusoidal flow
input variable (current, velocity, flow).

_ Xa _ effort variable

Zi Xy, flow variable

(1.12)

The power P is the time rate of energy transfer from the measurement
medium.
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To minimize P, when measuring effort variables X, . we should make the
generalized input impedance as large as possible. This is usually achieved by

: imizing the flow variable. However, most instrume_nts function by measur-
minute values of the flow variable, so the ﬂowi variable ca_nnot be reduced
o zero. On the other hand, when we are measuring 'ﬂow variables X, srr}all
: input impedance is needed to minimize P Thc. loading caused by measuring
devices depends on the magnitude of the input impedance |Z_t|.compared with
' the magnitude of the source impedance |Z| for the desired input. Unfm‘"tu-
~ nately, biological source impedances are usually unkn_own, variable, and diffi-
cult to measure and control. Thus the instrument d:;sngner must usually focus
on maximizing the input impedance Z, for effort-variable measurement. When
the measurand is a flow variable instead of an effqrt variable, it is more
convenient to use the admittance Y, = 1/Z, than the impedance.

1.10 GENERALIZED DYNAMIC CHARACTERISTICS

Only a few medical measurements, such as body temperature, are constant
or slowly varying quantities. Most medical instruments must process signals
that are functions of time. It is this time-varying property of medical signals
that requires us to consider dynamic instrument characteristics. Di_fferential
or integral equations are required to relate dynamic inputs to dynamic outputs
for continuous systems. Fortunately, many engineering instruments can be
described by ordinary linear differential equations with constant coefficients.
The input x(z) is related to the output y(r) according to the following equation:
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where the constants a; (i = 0,1,. . .,n)and b; (j =0, 1,. . ., m) depend

on the physical and electric parameters of the system. By introducing the
differential operator D* = d*( )/dt*, we can write this equation as

(1.15)
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Readers familiar with Laplace transforms may recognize that D can be
replaced by the Laplace parameter s to obtain the equation relating the
transforms Y(s) and X(s). This is a linear differential equation, because the
linear properties stated in Figure 1.4(a) are assumed and the coefficients
and b; are not functions of time or the input x(¢). The equation is ordinajr'y,
because there is only one independent variable y. Essentially such properties
mean that the instrument’s methods of acquiring and analyzing the signals do
not change as a function of time or the quantity of input. For example, an
autoranging instrument may violate these conditions.
Most practical instruments are described by differential equations of zero,
first, or second order; thus n = 0, 1, 2, and derivatives of the input are usually

absent, so m = 0.
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TRANSFER FUNCTIONS

The trans i i i
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input i; usuaaﬁvzﬁdac-u £ the angular frequency in radians per second. The

have died out T%]e 0 t3 Sy sin (wr), and all transients are assumed to

amplitue anci - udpul y(t) is a sinusoid with the same frequency, but the

frequency transtor e bend Of @; that is, y(1) = B(w) sin [wr + ¢(w)]. The
Yy transfer function is g complex quantity having a magnitude that is

input x(z). - ;

exircsq(i;qu:;phasefang]e for most instruments is negative. We do not usually

that ith i5: nst :uf. " lh.e system as y(r) for each frequency, because we know
jus sinusoid with a particular magnitude and phase. Instead,
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The dynamic characteristics of instruments are illustrated below by exam-
ples of zero-, first-, and second-order linear instruments for step and sinusoi-

dal inputs.

ZERO-ORDER INSTRUMENT

The simplest nontrivial form of the differential equation results when all the
a’s and b’s are zero exceplt a, and by.

agy(r) = byx(1) (1.18)
This is an algebraic equation, so
WD) . U] Dy K = static sensitivity (1.19)

x(D) X(jo) a

where the single constant K replaces the two constants a, and b,. This zero-
order instrument has ideal dynamic performance, because the output is propor-
tional to the input for all frequencies and there is no amplitude or phase dis-
tortion.

A linear potentiometer is a good example of a zero-order instrument.
Figure 1.5 shows that if the potentiometer has pure uniform resistance, then
the output voltage y(1) is directly proportional to the input displacement x(¢),
with no time delay for any frequency of input. In practice, at high frequencies,
some parasitic capacitance and inductance might cause slight distortion. Also,
low-resistance circuits connected to the output can load this simple zero-

order instrument.

FIRST-ORDER INSTRUMENT

If the instrument contains a single energy-storage element, then a first-order
derivative of y(r) is required in the differential equation.

a, ) + aoy(t) = box (1) (1:20)

dt
This equation can be written in terms of the differential operator D as

(D + Dy(t) = Kx(1) (1.21)

where K = by/a, = static sensitivity, and 7 = a,/a, = time constant.
Exponential functions offer solutions to this equation when appropriate
constants are chosen. The operational transfer function is
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and the frequency transfer function is

Y (jw) ee o K
X____—(jw) P v o m /& = arctan (—w7/1) (1.23)

The RC low-pass filter circuit shown in Fj i
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i Shy h] . y(z) = Kx(r). The static-sensitivity curve given in
i dl:ffe _c:\;vs that static outputs are equal to static inputs. This is verified
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Figure 1.6 (a) A low-pass RC filter, an example of a first-order instrument.
(b) Static sensitivity for constant inputs. (c) Step response for large time
constants (7 ) and small time constants (7). (d) Sinusoidal frequency response
for large and small time constants.

The smaller the time constant, the faster the output approaches the input.
For sinusoids, (1.23) and Figure 1.6(d) show that the magnitude of the output
decreases as frequency increases. For larger time constants, this decrease
occurs at lower frequency.

When @ = 1/7, the magnitude is 1/V2 = 0.707 times smaller, and the
phase angle is —45°. This particular frequency w is known as the corner, cutoff,
or break frequency. Figure 1.6(d) verifies that this is a low-pass filter; low-
frequency sinusoids are not severely attenuated, whereas high-frequency sinu-
soids produce very little output voltage. The ordinate of the frequency-
response magnitude in Figure 1.6(d) is usually plotted on a log scale and may
be given in units of decibels (dB), which are defined as dB = 20 log,|Y (jw)/



X(jw). A mercury-in-glass thermometer is another example of a low-pass
first-order instrument.

EXAMPLE 11 A first-order low-pass instrument has a time constant of 2()
ms. Find the maximal sinusoidal input frequency that will keep output error
due to frequency response less than 5%. Find the phase angle at this frequency,

ANSWER
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K

K
—=——=0.95K
V1 + o7
(0’77 + 1)(0.95)* = 1

»_ 1 -(095)
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o =16.4rad/s
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w
f—2—1;—2‘62Hz

frequency sinusoids are lit{]e attenuated. The sinusoidal transfer function is
Y(jo)/X(jw) = Jot/(1 + jwur).

SECOND-ORDER INSTRUMENT

An instrument is second order if a second-order differential equation is re-
quired to describe its dynamic response.

2 d;f{ff) +a dj;,(;) T ay(t) = byx(1) (1.25)

tants in (1.25) can be reduced to three new ones that have
four consta ]

physical significance:
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where

B static sensitivity, output units divided by input units
ay

W, = f'— = undamped natural frequency, rad/s
n
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= damping ratio, dimensionless
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and the frequency transfer function is

Y(jw) _ K
X(jo)  (jolw,) + 2ole,) + 1 g
2
L ¢ = arctan ————— (1.28)
h V[l — (w/w,)] + 40w} / wlw, — w,/o

A mechanical force-measuring instrument illust}‘ates tge ‘prgE:_rél:; I;)it;lz
second-order instrument (Doebelin, 1990). Mass, spring, an :lis':the s
elements oppose the applied input force x(f), and the outpu e
displacement y(r) of the movable mass a‘ttached to the spang thi it
If the natural frequency of the spring is much greater than i
components in the input, the dynamic effect of the spring can_n |
adding one-third of the spring’s mass to the mass of the moving
obtain the equivalent total mass M. ‘ s

Hoolfequaw for linear springs is assumfa-d3 SO t_he spring ;o:::le:nct 01151 :f;nt ;y
friction is neglected and perfect viscous friction is assumed,
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Figure 1.7 (a) Force-measuring spring scale, an example of a second-order
instrument. (b) Static sensitivity. (c) Step response for overdamped case ¢ =
2, critically damped case ¢ = 1, underdamped case { = 0.5. (d) Sinusoidal
steady-state frequency response, { = 2, { = 1, { = 0.5. [Part (a) modified
from Measurement Systems: Application and Design, by E. O. Doebelin.
Copyright © 1990 by McGraw-Hill, Inc. Used with permission of McGraw-
Hill Book Co.]

To eliminate gravitational force from the equation, we adjust the scale

until y = 0 when x = 0. Then the sum of the forces equals the product of
mass and acceleration.

x(1) — tod0 Ky(1) = JYLi0)

dt dr (1.29)

This equation has the same form as (1.26) when the static sensitivity, undamped
natural frequency, and damping ratio are defined in terms of K, B, and M,

as follows:
K=1/K, (1.30)
oy = NAGIM (1.31)

B (1.32)

i - in Figure 1.7(b). The step
The ic response is y(1) Kx(r), as shown in : .b '
pos;:et:f:;n have three forms, depending on the damping ratio. For a unit-
res

step input, these three forms are

Overdamped, { > 1

A2 — Y e
§+ é’: =1 Ke(—_{+\-"?:ﬁw,.f 4 g_ C 1Ke(—g—\ T =1)wt + K

YO Vp1 NE-1
(1.33)
Critically damped, { = 1:
(1.34)

y(t) = —(1 + w,)Ke ™ + K

Underdamped, ¢ < 1:

e Ksin(VI- 0 +K
y(t) = — vwl—:—éEKS“l( 1— ot + ®) (1.35)

¢ = arcsin V1 — {2

Examples of these three step responses are represented in Figure l.?(cg. Cénh;
for damping ratios less than unity does the step response ovet:shopt the :1;1
value. Equation (1.35) shows that the fre.quency of the oscillations in the
underdamped response in Figure 1.7(c) is the darqpesi na}tural freq_ugnc;;
ws = w,V1 — {%. A practical compromise between rapid rise time and minima

overshoot is a damping ratio of about 0.7.

EXAMPLE 1.2 For underdamped second-order instruments, find the damp-
ing ratio ¢ from the step response.

ANSWER To obtain the maximums for the underdamped response, we Fa‘ke
the derivative of (1.35) and set it to zero. For £ < (0.3 we approximate posmhv_e
maximums when the sine argument equals 3m/2, 7m/2, and so forth. This

occurs at
372 — ¢ _ Ta2—¢ (1.36)
b= and til = — — _-;
w,V1— l wn\/l—__?

The ratio of the first positive overshoot y, 10 the second positive overshoot
Yuer [Figure 1.7(c)] is
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For sinusoidal stead
(1.28) and Figure L.7(d) show that low-

er instruments, the maximal phase lag
is 90°,

TIME DELAY

Instrument elements that give an output that is exactly the same as the input,

except that it is delayed in time by 7y, are defined as time-delay elements. The
mathematical expression for these elements is

yO =Kx(t-17), > (1.39)

These elements may also be called analog delay lines, transport lags, or dead
times. Although first-order and second-order instruments have negative phase
angles that imply time delays, the phase angle varies with frequency, so the
delay is not constant for all frequencies. For time delays, the static characteris-

tic is the constant K, the step response is specified by (1.39), and the sinusoidal
frequency response for magnitude and phase is

X_____(jw) = d (1.40)

Time delays are presentin transmissio

n lines (electric, mechanical, hydrau-
lic blood vess

els, and pneumatic respiratory tubing), magnetic tape recorders,

| digital signal-processing schemes. Usually these time delays are to
and some

ided, especially in instruments or systems that involve feedback, because
~ be avoided, :
' zdesired oscillations may result.

he instrument is used strictly for measurement and is not part of a
If the 1

k-control system, then some time delay is usually acceptable. The
- feedback-C Y

i i i ith time delay becomes
i torted signal reproduction wit
transf)?l:lleljlc;lf_’_nl?r{ Enc(j;z‘oOur previous study of time-delay elements shows
Y (jo Jo) =

' utput magnitude is K times the input magnitude for all frequencies
' th?it tt::tolhepphase lag increases linearly with frequency.
~ an
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] fer function. The overall transfer function of linear elements connect
er fun ,

i ¢ individuz ts.
ies is the product of the transfer functions for the individual elﬁnﬁir;ar
R lcsombinations of nonlinear elements can prodyce the overddu[aﬁon
Mamli function required. Various forms of modulation apd demo on
E ercl and unavoidable sensor nonlinearities can sometimes be comp
are used, :
sated for by other instrument elements.

111 DESIGN CRITERIA

As shown, many factors affect the design of biomedical én;;r:emn;erflésr e’[;l;h
ti aints on the design are of course diffe
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i er, some of the general requi s
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F aNote that the type of sensor selected usuail}t detejrml.nei t‘ile‘mgélrael Slr;n
i i 50 an instrument specification includes m :

cessing equipment needed, so an ! ! b o

j btain a final design, som

ust what type of sensor to use. To o { pE :

lin Speciﬁca)iﬁms are usually required. Actual tests 01(1:;: prolo:tyip;e;l;;rﬁ:sge

i isions be made. Changes

needed before final design decisions can . s
i i i lex instrument often dictate g

and interaction of the elements in a comp -

modifications. Good designs are frequently the result of many cl-?rﬁlz;oarrl:ine

throughout the development of the instrumel}t‘. In Chapter 2, Kets a | cxamine

basic methods of sensing biomedical quantities to ensure that many

design alternatives are considered.

112 COMMERCIAL MEDICAL INSTRUMENTATION
DEVELOPMENT PROCESS

j size of
A commercial medical instrument project has many phases,ﬂal;lldcl(}:;e -
the team needed grows as the project progresses. Ide_as‘ole ek
People working where health care is delivered, because clinical nee
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