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Abstract

This report presents the Near set Evaluation And Recognition (NEAR) system. The goal of the
NEAR system is to extract perceptual information from images using near set theory, which provides
a framework for measuring the perceptual nearness of objects. The contributions of this report are an
introduction to the NEAR system as an application of near settheory to image processing, a feature-
based approach to solving the image correspondence problem, and a first step toward automating the
extraction of perceptual information from images where there is interest in measuring the degree of
resemblance between images.

1 Introduction

The goal of the NEAR system is to demonstrate applications of the near set theory presented in [1–9]. The
system implements a Multiple Document Interface (MDI) (see,e.g., Fig.1) where each separate processing
task is performed in its own child frame. The objects (in the near set sense) inthis system are subimages of
the images being processed and the probe functions (features) are imageprocessing functions defined on the
subimages. The system was written in C++ and was designed to facilitate the addition of new processing
tasks and probe functions1. Currently, the system performs five major tasks, namely, displaying equivalence
and tolerance classes for an image, performing segmentation evaluation, measuring the nearness of two
images, and displaying the output of processing an image using an individual probe functions. This report
is organized as follows: Section2 gives some background on near set theory, and Section3 demonstrates
the application of near set theory to images. Finally, Sections5-8 describe the operation of the GUI.

This research work has been funded by Manitoba Hydro grants T137,T247, T260, T270, T277, and by the Natural Sciences &
Engineering Research Council of Canada (NSERC) grant 185986, NSERC Postgraduate Doctoral Fellowship PGS-D3, University
of Manitoba Faculty of Engineering grant, and Canadian Arthritis Network grant SRI-BIO-05.

1Parts of the Graphical User Interface (GUI) were inspired by the GUI reported in [10] and the wxWidgets example in [11].

1



Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on sets of perceptual objects with matching descriptions. Specifically, letO represent
the set of all objects. The description of an objectx ∈ O is given by

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the description and eachφi(x) is a probe function that describes the objectx.
The notion of a probe function in near sets is inspired by Monique Pavel [12], where a probe function
that is invariant relative to a transformation of the images results in matching function (feature) values.
In a near set approach, a real-valued funcionφ : O −→ <, O a set of images, is aprobe functionif,
and only ifφ represents an image feature with values that are in the description of a perceptual object, in
particular, in the description of an image [13–15]. Furthermore, a setF can be defined that represents all
the probe functions used to describe an objectx. Next, a perceptual information systemS can be defined
asS = 〈O,F, {V alφi}φi∈F〉, whereF is the set of all possible probe functions that take as the domain
objects inO, and{V alφi}φi∈F is the value range of a functionφi ∈ F. For simplicity, a perceptual system
is abbreviated as〈O,F〉 when the range of the probe functions is understood. It is the notion of a perceptual
system that is at the heart of the following definitions.

Definition 1 Normative Indiscernibility Relation [13] Let 〈O,F〉 be a perceptual system. For everyB ⊆
F, the normative indiscernibility relation∼B is defined as follows:

∼B= {(x, y) ∈ O ×O : ‖ φ(x) − φ(y) ‖= 0},

where‖·‖ represents thel2 norm. IfB = {φ} for someφ ∈ F, instead of∼{φ} we write∼φ.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak in 1981[16]. Using the
indiscernibility relation, objects with matching descriptions can be grouped together forming granules of
highest object resolution determined by the probe functions inB. This gives rise to an elementary set (also
called an equivalence class)

x/∼B
= {x′ ∈ O | x′ ∼B x},
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defined as a set where all objects have the same description. Similarly, a quotient set is the set of all
elementary sets defined as

O/∼B
= {x/∼B

| x ∈ O}.

Defn.1 provides the framework for comparisons of sets of objects by introducinga concept of nearness
within a perceptual system. Sets can be considered near each other whenthey have “things” in common. In
the context of near sets, the “things” can be quantified by granules of a perceptual system,i.e., the elementary
sets. The simplest example of nearness between sets sharing “things” in common is the case when two sets
have indiscernible elements. This idea leads to the definition of a weak nearness relation.

Definition 2 Weak Nearness Relation [2]
Let〈O,F〉 be a perceptual system and letX,Y ⊆ O. A setX is weakly near to a setY within the perceptual
system〈O,F〉 (X./FY ) iff there arex ∈ X andy ∈ Y and there isB ⊆ F such thatx ∼B y. In the case
where setsX,Y are defined within the context of a perceptual system as in Defn2, thenX,Y are weakly
near each other.

An examples Defn.2 is given in Fig.2 where the grey lines represent equivalence classes. The setsX and
Y are weakly near each other in Fig.2 because they both share objects belonging to the same equivalence
class.

Figure 2: Example of Defn.2.

O/∼B

X

Y

Defn.2 can be used to define a Nearness Measure (NM) between two setsX andY [9]. LetZ = X ∪Y
and let the notation

[z/∼B
]X = {z ∈ z/∼B

| z ∈ X},

denote the portion of the elementary setz/∼B
that belongs toX, and similarly, use the notation

[z/∼B
]Y = {z ∈ z/∼B

| z ∈ Y },

to denote the portion that belongs toY . Further, let the setsX andY be weakly near each other using
Defn.2. Then, a NM betweenX andY is given by

NM∼B
(X,Y ) =

(

∑

z/∼B
∈Z/∼B

|z/∼B
|

)−1
∑

z/∼B
∈Z/∼B

|z/∼B
|
min(|[z/∼B

]X |, |[z/∼B
]Y |)

max(|[z/∼B
]X |, |[z/∼B

]Y |)
(1)

The idea behind Eq.1 is that sets that are similar should have similar number of objects in each equivalence
class. Thus, for each equivalence class obtained fromZ = X ∪ Y , Eq.1 counts the number of objects that
belong toX andY and takes the ratio (as a proper fraction) of their cardinalities. Furthermore, each ratio
is weighted by the total size of the equivalence class (thus giving importanceto the larger classes) and the
final result is normalized by dividing by the sum of all the cardinalities. The range of Eq.1 is in the interval
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[0,1], where a value of 1 is obtained if the sets are equivalent and a valueof 0 is obtained if they have no
elements in common.

As an example of the degree of nearness between two sets, consider Fig.3 in which each image consists
of two sets of objects,X andY . Each colour in the figures corresponds to an elementary set where all
the objects in the class share the same description. The idea behind Eq.1 is that the nearness of sets in
a perceptual system is based on the cardinality of equivalence classes that they share. Thus, the sets in
Fig. 3(a)are closer (more near) to each other in terms of their descriptions than the sets in Fig.3(b).

(a) (b)

Figure 3: Example of degree of nearness between two sets: (a) High degree of nearness, and (b) low degree
of nearness.

2.1 Tolerance relation

A perception-based approach to discovering resemblances between images leads to a tolerance class form
of near sets that models human perception in a physical continuum viewed in the context of image tolerance
spaces. A tolerance space-based approach to perceiving image resemblances hearkens back to the obser-
vation about perception made by Ewa Orłowska in 1982 [17] (see, also, [18]), i.e., classes defined in an
approximation space serve as a formal counterpart of perception.

The termtolerance spacewas coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [19]. A tolerance space is a setX supplied with a binary relation' (i.e., a subset' ⊂ X ×X)
that is reflexive (for allx ∈ X, x ' x) and symmetric (i.e., for all x, y ∈ X, x ' y impliesy ' x) but
transitivity of' is not required. For example, it is possible to define a tolerance space relative to subimages
of an image. This is made possible by assuming that each image is a set of fixed points. LetO denote a set
of perceptual objects (e.g., gray level subimages) and letgr(x) = average gray level of subimagex. Then
define the tolerance relation

'gr= {(x, y) ∈ O ×O | |gr(x) − gr(y)| ≤ ε},

for some toleranceε ∈ < (reals). Then(O,'gr) is a sample tolerance space. The toleranceε is directly
related to the exact idea of closeness or resemblance (i.e., being within some tolerance) in comparing ob-
jects. The basic idea is to find objects such as images that resemble each otherwith a tolerable level of
error. Sossinsky [20] observes that main idea underlying tolerance theory comes from Henri Poincaré [21].
Physical continua (e.g., measurable magnitudes in the physical world of medical imaging [9]) are contrasted
with the mathematical continua (real numbers) where almost solutions are commonand a given equation
have no exact solutions. Analmost solutionof an equation (or a system of equations) is an object which,
when substituted into the equation, transforms it into a numerical ’almost identity’, i.e., a relation between
numbers which is true only approximately (within a prescribed tolerance) [20]. Equality in the physical
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world is meaningless, since it can never be verified either in practice or in theory. Hence, the basic idea in
a tolerance space view of images, for example, is to replace the indiscerniblityrelation in rough sets [22]
with a tolerance relation in partitioning images into homologous regions where there is a high likelihood of
overlaps,i.e., non-empty intersections between image tolerance classes. The use of imagetolerance spaces
in this work is directly related to recent work on tolerance spaces (see,e.g., [3,4,8,9,23–28]).

When dealing with perceptual objects (especially, components in images), it issometimes necessary to
relax the equivalence condition of Defn.1 to facilitate observation of associations in a perceptual system.
This variation is called a tolerance relation that defines yet another form ofnear sets [3,4,8] and is given in
Defn.3.

Definition 3 Tolerance Nearness Relation[3]
Let 〈O,F〉 be a perceptual system and letε ∈ R. For everyB ⊆ F the tolerance relation∼=B is defined as
follows:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x) − φ(y) ‖≤ ε}.

If B = {φ} for someφ ∈ F, instead of∼={φ} we write∼=φ. Further, for notational convince, we will write
∼=B instead of∼=B,ε with the understanding thatε is inherent to the definition of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance class can be definedas

x/∼=B
= {y ∈ O | y ∼=B x

′ ∀ x′ ∈ x/∼=B
}. (2)

Note, Defn.3 coversO instead of partitioning it because an object can belong to more than one class. As
a result, Eq.2 is called a tolerance class instead of an elementary set. In addition, each pairof objectsx, y
in a tolerance classx/∼=B

must satisfy the condition‖ φ(x) − φ(y) ‖≤ ε. Next, a quotient set for a given a
tolerance relation is the set of all tolerance classes and is defined as

O/∼=B
= {x/∼=B

| x ∈ O}.

Notice that the tolerance relation is a generalization of the indiscernibility relationgiven in Defn.1 (obtained
by settingε = 0). As a result, Defn.2 and Eq.1 can be redefined with respect to the tolerance relation2.

The following simple example highlights the need for a tolerance relation as well as demonstrates the
construction of tolerance classes from real data. Consider the 20 objects in Table1 that where|φ(xi)| = 1.
Letting ε = 0.1 gives the following tolerance classes:

X/∼=B
= {{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},

{x2, x7, x18, x19},

{x3, x12, x17},

{x4, x13, x20}, {x4, x18},

{x5, x6, x15, x16}, {x5, x6, x15, x20},

{x6, x13, x20}}

Observe that each object in a tolerance class satisfies the condition‖ φ(x) − φ(y) ‖≤ ε, and that almost all
of the objects appear in more than one class. Moreover, there would be twenty classes if the indiscernibility
relation was used since there are no two objects with matching descriptions.

2The two relations were treated separately in the interest of clarity.
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Table 1: Tolerance Class Example

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079

x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489

x4 .7972 x9 .4722 x14 .4990 x19 .9170

x5 .6281 x10 .4523 x15 .6289 x20 .7143

3 Perceptual image processing

Near set theory can be easily applied to images. For example, define a RGB image asf = {p1,p2, . . . ,pT },
wherepi = (c, r, R,G,B)T, c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈ [0, 255], andM,N respectively denote the
width and height of the image andM × N = T . Further, define a square subimage asfi ⊂ f with the
following conditions:

f1 ∩ f2 . . . ∩ fs = ∅,

f1 ∪ f2 . . . ∪ fs = f, (3)

wheres is the number of subimages inf . The approach taken in the NEAR system is to restrict all subimages
to be square except when doing so violates Eq.3. For example, the images in the Berkeley Segmentation
Dataset [29] often have the dimension321 × 481. Consequently, a square subimage size of 25 will produce
6240 square subimages, 96 subimages of size1 × 5, 64 subimages of size5 × 1 and 1 subimage consisting
of a single pixel. Next,O can be defined as the set of all subimages,i.e., O = {f1, . . . , fs}, andF is a set
of functions that operate on images (see,e.g. Section4 for examples of probe functions used in the NEAR
system or [30] for other examples). Once the setB has been selected, the elementary sets are simply created
by grouping all objects with the same description and the quotient set is made upof all the elementary sets.
Finally, a simple example of these concepts is given in Fig.4 where the left image contains an octagon
with a radius of 100 pixels located at the centre of the400 × 400 image, and the right image contains the
elementary sets obtained usingB = {φavg(fs)} and a subimage size of10 × 10.

(a) (b)

Figure 4: Example of near set theory in the context of image processing: (a) Original image, and (b)
elementary sets obtained from (a) usingφavg(fs).

Observe that three elementary sets are obtained in Fig.4(b), namely, the blue background, the orange
octagon interior, and the green squares along the diagonals. The greensquares are created by subimages
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that contain both black and white pixels (in the original image) and are located only on the diagonals due to
the subimage size and shape, and the position and radius of the hexagon. All other subimages are uniformly
white or black. Thus, we are presented with perceptual information in the form of three equivalence classes
when restricted to only being able to describe the original image with the probe functionB = {φavg(fs)}
and a subimage size of10 × 10. This example clearly demonstrates that perceptual information obtained
from the application of near set theory is represented by the elementary sets (formed by the grouping of
objects with similar descriptions), and the information gained is always presented with respect to the probe
functions contained inB.

4 Probe functions

This section describes the probe functions used in the NEAR system, and gives example NEAR system
output images processed using these probe functions.

4.1 Average greyscale value

Conversion from RGB image to greyscale is accomplished using Magick++, the object-orientated C++ API
to the ImageMagick image-processing library [31]. First, an RGB image is converted to greyscale using

Gr = 0.299R+ 0.587G+ 0.114B, (4)

and then the values are averaged over each subimage. An example is given in Fig.5.

(a) (b) (c)

Figure 5: Example of average greyscale probe function: (a) Original image [32], (b) average greyscale over
subimages of size5 × 5, and (c) average greyscale over subimages of size10 × 10.

4.2 Normalized RGB

The normalized RGB values is a feature described in [30], and the formula isgiven by

NX =
X

RT +GT +BT
,

where the valuesRT , GT , andBT are respectively the sum ofR,G,B components of the pixels in each
subimage, andX ∈ [RT , GT , BT ]. See Fig.6 for an example using this probe function. Note, these images
were produces by finding the normalized value and multiplying it by 255.

CI Laboratory TR-2009-015 7



(a) (b) (c)

Figure 6: Example of normalized RGB probe function: (a) Original image [29], (b) normalized R over
subimages of size5 × 5, and (c) normalized R over subimages of size10 × 10.

4.3 Shannon’s entropy

Shannon introduced entropy (also called information content) as a measureof the amount of information
gained by receiving a message from a finite codebook of messages [33]. The idea was that the gain of infor-
mation from a single message is proportional to the probability of receiving themessage. Thus, receiving a
message that is highly unlikely gives more information about the system than a message with a high prob-
ability of transmission. Formally, let the probability of receiving a messagei of n messages bepi, then the
information gain of a message can be written as

∆I = log(1/pi) = − log(pi), (5)

and the entropy of the system is the expected value of the gain and is calculated as

H = −
n
∑

i=1

pi log(pi).

This concept can easily be applied to the pixels of a subimage. First, the subimage is converted to
greyscale using Eq.4. Then, the probability of the occurrence of grey leveli can be defined aspi = hi/Ts,
wherehi is the number of pixels that take a specific grey level in the subimage, andTs is the total number
of pixels in the subimage. Information content provides a measure of the variability of the pixel intensity
levels within the image and takes on values in the interval[0, log2 L] whereL is the number of grey levels
in the image. A value of 0 is produced when an image contains all the same intensitylevels and the highest
value occurs when each intensity level occurs with equal frequency [34]. An example of this probe function
is given in Fig.7. Note, these images were formed by multiplying the value of Shannon’s entorpy by 32
sinceL = 256 (thus giving a maximum value of 8).

(a) (b) (c)

Figure 7: Example of Shannon’s entropy applied to images: (a) Original image[29], (b) Shannon’s entropy
applied to subimages of size5 × 5, and (c) Shannon’s entropy applied to subimages of size10 × 10.
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4.4 Pal’s entropy

Work in [33, 35] shows that Shannon’s definition of entropy has some limitations. Shannon’s definition of
entropy suffers from the following problems: it is undefined whenpi = 0; in practise the information gain
tends to lie at the limits of the interval[0, 1]; and statistically speaking, a better measure of ignorance is 1 -
pi rather than1/p1 [33]. As a result, a new definition of entropy can be defined with the following desirable
properties:

P1: ∆I(pi) is defined at all points in[0, 1].

P2: limpi→0 ∆I(pi) = ∆I(pi = 0) = k1, k1 > 0 and finite.

P3: limpi→1 ∆I(pi) = ∆I(pi = 1) = k2, k2 > 0 and finite.

P4: k2 < k1.

P5: With increase inpi, ∆I(pi) decreases exponentially.

P6: ∆I(p) andH, the entropy, are continuous for0 ≤ p ≤ 1.

P7: H is maximum when allpi’s are equal,i.e.H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

With these in mind, [33] defines the gain in information from an event as

∆I(pi) = e(1−pi),

which gives a new measure of entropy as

H =
n
∑

i=1

pie
(1−pi).

Pal’s version of entropy is given in Fig.8. Note, these images were formed by first converting the original
image to greyscale, calculating the entropy for each subimage, and multiplying this value by 94 (since the
maximum ofH is e1−1/256).

(a) (b) (c)

Figure 8: Example of Pal’s entropy applied to images: (a) Original image [29], (b) Pal’s entropy applied to
subimages of size5 × 5, and (c) Pal’s entropy applied to subimages of size10 × 10.

4.5 Edge based probe functions

The edge based probe functions integrated in the NEAR system incorporate an implementation of Mallat’s
Multiscale edge detection method based on Wavelet theory [36]. The idea is that edges in an image occur
at points of sharp variation in pixel intensity. Mallat’s method calculates the gradient of a smoothed image
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using Wavelets, and defines edge pixels as those that have locally maximal gradient magnitudes in the
direction of the gradient.

Formally, define a 2-D smoothing functionθ(x, y) such that its integral overx andy is equal to 1, and
converges to 0 at infinity. Using the smoothing function, one can define the functions

ψ1(x, y) =
∂θ(x, y)

∂x
and ψ2(x, y) =

∂θ(x, y)

∂y
,

which are, in fact, wavelets given the properties ofθ(x, y) mentioned above. Next, the dilation of a function
by a scaling factors is defined as

ξs(x, y) =
1

s2
ξ(
x

s
,
y

s
).

Thus, the dilation bys of ψ1, andψ2 is given by

ψ1
s(x, y) =

1

s2
ψ1(x, y) and ψ2

s(x, y) =
1

s2
ψ2(x, y).

Using these definitions, the wavelet transform off(x, y) ∈ L2(R2) at the scales is given by

W 1
s f(x, y) = f ∗ ψ1

s(x, y) and W 2
s f(x, y) = f ∗ ψ2

s(x, y),

which can also be written as
(

W 1
s f(x, y)

W 2
s f(x, y)

)

= s

(

∂
∂x(f ∗ θs)(x, y)
∂
∂y (f ∗ θs)(x, y)

)

= s~∇(f ∗ θs)(x, y).

Finally, edges can be detected by calculating the modulus and angle of the gradient vector defined respec-
tively as

Msf(x, y) =
√

|W 1
s f(x, y)|2 + |W 2

s f(x, y)|2

and
Asf(x, y) = argument(W 1

s f(x, y) + iW 2
s f(x, y)),

and then finding the modulus maximum defined as pixels with modulus greater than the two neighbours in
the direction indicated byAsf(x, y) (see [36] for specific implementation details). Examples of Mallatt’s
edge detection method obtained using the NEAR system are given in Fig.9.

4.5.1 Edge present

This prob function simply returns true if there is an edge pixel contained in thesubimage (see,e.g., Fig.10).

4.5.2 Number of edge pixels

This probe function returns the total number of pixels in a subimage belongingto an edge (see,e.g., Fig.11).

4.5.3 Edge orientation

This probe function returns the average orientation of subimage pixels belonging to an edge (see,e.g.,
Fig. 12).

CI Laboratory TR-2009-015 10



(a) (b)

(c) (d)

Figure 9: Example of NEAR system edge detection using Mallat’s method: (a) Original image, (b) edges
obtained from (a), (c) original image, and (d) obtained from (c).

(a) (b) (c)

Figure 10: Example of edge present probe function: (a) Edges obtained from Fig.5(a), (b) Application to
image with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

5 Equivalence class frame

This frame calculates equivalence classes using the Indiscernibility relationof Defn.1, i.e., given an image
X, it will calculateX/∼B

where the objects are subimages ofX. See Section3 for an explanation of
the theory used to obtain these results. A sample calculation using this frame is given in Fig.13 and was
obtained by the following steps:

1. Click Load Imagebutton.

2. Select number of features (maximum allowed is four).

3. Select features (see Section4 for a list of probe functions).

CI Laboratory TR-2009-015 11



(a) (b) (c)

Figure 11: Example of number of edge pixels probe function: (a) Originalimage, (b) Application to image
with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

(a) (b) (c)

Figure 12: Example of average orientation probe function: (a) Original image, (b) Application to image
with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

4. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

5. Click Run.

The result is given in Fig.13 where the bottom left window contains an image of the equivalence classes
where each colour represents a single class. The bottom right window is used to display equivalence classes
by clicking in any of the three images. The coordinates of the mouse click determine the equivalence class
that is displayed. The results may be saved by clicking on the save button.

6 Tolerance class frame

This frame calculates tolerance classes using the Tolerance relation of Defn. 3, i.e., given an imageX, it
will calculateX/∼=B

where the objects are subimages ofX. This approach is similar to the one given in
Section3 with the exception that Defn.1 is replaced with Defn.3. A sample calculation using this frame is
given in Fig.14and was obtained by the following steps:

1. Click Load Imagebutton.

2. Select number of features (maximum allowed is four).

CI Laboratory TR-2009-015 12



Figure 13: Sample run of the equivalence class frame using a window size of 5 × 5 and B =
{φNormG, φHShannon}.

Figure 14: Sample run of the tolerance class frame using a window size of10×10, B = {φNormG, φHShannon},
andε = 0.05.

3. Select features (see Section4 for a list of probe functions).

4. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

5. Selectε, a value in the interval[0, 1].

CI Laboratory TR-2009-015 13



6. Click Run.

The result is given in Fig.14 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation does not partitionan image, the tolerance classes
are displayed upon request. For instance, by clicking on either of the two images, all the tolerance classes
are displayed that are withinε of the subimage containing the coordinates of the mouse click. Further, the
subimage containing the mouse click is coloured black.

7 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphology as described in [2,6], where the
evaluation is labelled the Near Set Index (NSI). For instance, given a set of probe functionsB, and an image
A, this frame can perform the perceptual erosion or dilation usingB = O/∼B

as the SE. Also, the NSI is
calculated if perceptual erosion was selected. A sample calculation using thisframe is given in Fig.15 and
was obtained by the following steps:

Figure 15: Sample run of the segmentation evaluation frame using a window size of 2 × 2, andB =
{φNormG, φHShannon}.

1. Click Load Image & Segmentbutton.

2. Select an image clickOpen.

3. Select segmentation image and clickOpen. Image should contain only one segment and the segment
must be white(255, 255, 255) and the background must be black(0, 0, 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure this is the case).

4. Select number of features (maximum allowed is four).

5. Select features (see Section4 for a list of probe functions).
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6. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

7. Click Erode to perform perceptual erosion and segmentation evaluation. ClickDilate to perform
perceptual dilation (no evaluation takes place during dilation).

The result is given in Fig.15 where the bottom left window contains the an image of the equivalence
classes where each colour represents a different class. The bottom right window contains either the segments
erosion or dilation. Clicking on any of the three images will display the equivalence class containing the
mouse click in the bottom right image. The NSI is also displayed on the left hand side.

8 Near image frame

This frame is used to calculate the nearness of two images using the nearnessmeasure from Eq.1 defined
in Section2. A sample calculation using this frame is given in Fig.16 and was obtained by the following
steps:

Figure 16: Sample run of the near image frame using a window size of10 × 10, B = {φNormG, φHShannon},
andε = 0.05.

1. Click Load Imagesbutton and select two images.

2. Select number of features (maximum allowed is four).

3. Select features (see Section4 for a list of probe functions).

4. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

5. Selectε, a value in the interval[0, 1].

6. Click Run.
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The result is given in Fig.16 where the left side contains the first image, and the right side contains the
second image. Clicking in any of the two images will display the tolerance classesfrom both images near
to the subimage selected by the mouse click. The subimage matching the coordinates of the mouse click is
coloured black and all subimages that are near to the black subimage are displayed using a different colour
for each class. The NM is also displayed on the left hand side.

9 Feature display frame

This frame is used to display the output of processing an image with a specific probe function. A sample
calculation using this frame is given in Fig.17and was obtained by the following steps:

Figure 17: Sample run of the feature display frame.

1. Click Load Imagebutton and select an image.

2. Select features (see Section4 for a list of probe functions).

3. Select probe function

4. Click Display feature.
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