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Abstract

This report presents the Near set Evaluation And Recogn{iNEAR) system. The goal of the
NEAR system is to extract perceptual information from inggeing near set theory, which provides
a framework for measuring the perceptual nearness of abjddte contributions of this report are an
introduction to the NEAR system as an application of neaitlsstry to image processing, a feature-
based approach to solving the image correspondence problatna first step toward automating the
extraction of perceptual information from images whererghis interest in measuring the degree of
resemblance between images.

1 Introduction

The goal of the NEAR system is to demonstrate applications of the near sgf firesented in [1-9]. The
system implements a Multiple Document Interface (MDI) (&@., Fig.1) where each separate processing
task is performed in its own child frame. The objects (in the near set sen$id system are subimages of
the images being processed and the probe functions (features) areprnegssing functions defined on the
subimages. The system was written in C++ and was designed to facilitate titieradfinew processing
tasks and probe functiohsCurrently, the system performs five major tasks, namely, displaying @quise
and tolerance classes for an image, performing segmentation evaluatiosyringahe nearness of two
images, and displaying the output of processing an image using an indipiaee functions. This report
is organized as follows: Secticghgives some background on near set theory, and Se8td@monstrates
the application of near set theory to images. Finally, Sectte8slescribe the operation of the GUI.

This research work has been funded by Manitoba Hydro grants TR37, T260, T270, T277, and by the Natural Sciences &
Engineering Research Council of Canada (NSERC) grant 1859BBRT Postgraduate Doctoral Fellowship PGS-D3, University
of Manitoba Faculty of Engineering grant, and Canadian Arthritis NetwoakigSRI-BIO-05.

parts of the Graphical User Interface (GUI) were inspired by the @pbrted in [10] and the wxWidgets example in [11].



Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on sets of perceptual objects with matchimiptiess. Specifically, leD represent
the set of all objects. The description of an object O is given by

¢(x) = (91(2), (), ..., di(2), ... (),

where! is the length of the description and eagl(x) is a probe function that describes the object
The notion of a probe function in near sets is inspired by Monique Pa2@| ythere a probe function
that is invariant relative to a transformation of the images results in matchirggidan(feature) values.
In a near set approach, a real-valued funcfon O — R, O a set of images, is probe functionif,
and only if ¢ represents an image feature with values that are in the description ofeppexicobject, in
particular, in the description of an image [13-15]. Furthermore, & sein be defined that represents all
the probe functions used to describe an objecNext, a perceptual information syste$ncan be defined
asS = (O,F,{Valy, }4,cr), whereF is the set of all possible probe functions that take as the domain
objects inO, and{Valy, }4,cr is the value range of a functiasy € IF. For simplicity, a perceptual system
is abbreviated ag), ) when the range of the probe functions is understood. It is the notionefcaptual
system that is at the heart of the following definitions.

Definition 1 Normative Indiscernibility Relation [13] Let (O, F) be a perceptual system. For evesyC
IF, the normative indiscernibility relatior 5 is defined as follows:

~5={(z,9) € O x O : || o(z) — d(y) |[= 0},
where| -|| represents thé’ norm. If 3 = {¢} for somep € F, instead of+;, we write~.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak in 1p&]. Using the
indiscernibility relation, objects with matching descriptions can be groupedhegérming granules of
highest object resolution determined by the probe functiort ifihis gives rise to an elementary set (also
called an equivalence class)

Ty =1{2' € O] 2’ ~px},

Cl Laboratory TR-2009-015 2



defined as a set where all objects have the same description. Similarlytiangset is the set of all
elementary sets defined as
O = A7)y | © € O}.

Defn. 1 provides the framework for comparisons of sets of objects by introdwecguncept of nearness
within a perceptual system. Sets can be considered near each othathefpéave “things” in common. In
the context of near sets, the “things” can be quantified by granulesasteptual systenie., the elementary
sets. The simplest example of nearness between sets sharing “thingsinmocois the case when two sets
have indiscernible elements. This idea leads to the definition of a weak seaeahation.

Definition 2 Weak Nearness Relation [2]

Let (O, ) be a perceptual system and EtY C O. A setX is weakly near to a sét within the perceptual
systemO, F) (XxipY') iff there arexz € X andy € Y and there is5 C F such thatz ~5 y. In the case
where setsX, Y are defined within the context of a perceptual system as in Retfmen X, Y are weakly
near each other.

An examples Defn2 is given in Fig.2 where the grey lines represent equivalence classes. Th& satsl
Y are weakly near each other in Fybecause they both share objects belonging to the same equivalence
class.

O/NB

Figure 2: Example of DefrR.

Defn.2 can be used to define a Nearness Measure (NM) between tw& setdY [9]. Let Z = X UY
and let the notation

[2/nslx = {2 € 2/ | 2 € X},
denote the portion of the elementary set,, that belongs toX, and similarly, use the notation

[2/mply ={2 €2/ | 2 €Y,

to denote the portion that belongs Ya Further, let the setX andY be weakly near each other using
Defn.2. Then, a NM betweeX andY is given by

B min(|[2/p] x| /sl )
NM~B(X,Y)=< ) \Z/~B|> DORNETN Al il i S8 )

Z/NBGZ/NB Z/NBEZ/NB maX(HZ/NB]X|’ ’[Z/NB]Y‘)

The idea behind EdL is that sets that are similar should have similar number of objects in each leqaiva
class. Thus, for each equivalence class obtained #fom X U Y, Eq. 1 counts the number of objects that
belong toX andY and takes the ratio (as a proper fraction) of their cardinalities. Furtherreach ratio
is weighted by the total size of the equivalence class (thus giving importaribe larger classes) and the
final result is normalized by dividing by the sum of all the cardinalities. Emge of Eql is in the interval
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[0,1], where a value of 1 is obtained if the sets are equivalent and a valués obtained if they have no
elements in common.

As an example of the degree of nearness between two sets, consid&irRighich each image consists
of two sets of objectsX andY. Each colour in the figures corresponds to an elementary set where all
the objects in the class share the same description. The idea behiddsEpat the nearness of sets in
a perceptual system is based on the cardinality of equivalence claste¢beyp share. Thus, the sets in
Fig. 3(a)are closer (more near) to each other in terms of their descriptions thartshie 5&y.3(b).

(@) (b)

Figure 3: Example of degree of nearness between two sets: (a) Higkedsfghearness, and (b) low degree
of nearness.

2.1 Tolerance relation

A perception-based approach to discovering resemblances betweessifeads to a tolerance class form
of near sets that models human perception in a physical continuum viewesldaoritext of image tolerance
spaces. A tolerance space-based approach to perceiving imagelasees hearkens back to the obser-
vation about perception made by Ewa Ortowska in 1982 [17] (see, dl8), |.e., classes defined in an
approximation space serve as a formal counterpart of perception.

The termtolerance spaceavas coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [19]. A tolerance space is a Eesupplied with a binary relatior (i.e., a subsetr C X x X)
that is reflexive (for alle € X, x ~ x) and symmetrici(e, for all z,y € X, z ~ y impliesy ~ x) but
transitivity of ~ is not required. For example, it is possible to define a tolerance spatieaétesubimages
of an image. This is made possible by assuming that each image is a set ofdired petO denote a set
of perceptual objectse(g, gray level subimages) and lgt(z) = average gray level of subimage Then
define the tolerance relation

~p={(z,y) €0 xO| |gr(z) —gr(y)| < e},

for some tolerance € R (reals). ThenO, ~,,) is a sample tolerance space. The toleran@edirectly
related to the exact idea of closeness or resembldrcebging within some tolerance) in comparing ob-
jects. The basic idea is to find objects such as images that resemble eachitiheetolerable level of
error. Sossinsky [20] observes that main idea underlying toleranoeytbemes from Henri Poincaf21].
Physical continuag.g, measurable magnitudes in the physical world of medical imaging [9]) ateasbed
with the mathematical continua (real numbers) where almost solutions are coamdangiven equation
have no exact solutions. Amimost solutiorof an equation (or a system of equations) is an object which,
when substituted into the equation, transforms it into a numerical 'almost idemtity’a relation between
numbers which is true only approximately (within a prescribed tolerancg) [Ruality in the physical
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world is meaningless, since it can never be verified either in practice oranythidence, the basic idea in
a tolerance space view of images, for example, is to replace the indiscernébdityon in rough sets [22]
with a tolerance relation in partitioning images into homologous regions whereitharhigh likelihood of

overlapsj.e., non-empty intersections between image tolerance classes. The use ofdateagece spaces
in this work is directly related to recent work on tolerance spaces ¢sg€3, 4, 8,9, 23-28]).

When dealing with perceptual objects (especially, components in imagesypinistimes necessary to
relax the equivalence condition of Defhto facilitate observation of associations in a perceptual system.
This variation is called a tolerance relation that defines yet another foneasfsets [3, 4, 8] and is given in
Defn. 3.

Definition 3 Tolerance Nearness Relatioff3]
Let (O, F) be a perceptual system and et R. For everyB C F the tolerance relatior¥ is defined as
follows:

g o= {(z,y) €O x O :| ¢(x) — d(y) ||< €}

If B = {¢} for somep € F, instead of=,, we write=;. Further, for notational convince, we will write
=5 instead o= . with the understanding thatis inherent to the definition of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance class can be defined
/ey ={ycO|y=pa'Va' e} 2

Note, Defn.3 coversO instead of partitioning it because an object can belong to more than one &&ss
aresult, Eq2 is called a tolerance class instead of an elementary set. In addition, each @ajectsz, y

in a tolerance class,~,, must satisfy the conditioft ¢(z) — ¢(y) [|< e. Next, a quotient set for a given a
tolerance relation is the set of all tolerance classes and is defined as

O/gB = {ZL’/gB ’ T e O}

Notice that the tolerance relation is a generalization of the indiscernibility relgiven in Defn.1 (obtained
by settinge = 0). As a result, Defn2 and Eq.1 can be redefined with respect to the tolerance relation

The following simple example highlights the need for a tolerance relation as svdkmonstrates the
construction of tolerance classes from real data. Consider the 2Gobjél@ablel that wherg¢(z;)| = 1.
Letting e = 0.1 gives the following tolerance classes:

Xy = {{71, 28, 210, 11}, {71, 29, 210, 711, T14},
{m2, 27, 218, 719},
{r3, 212, 717},
{za, 213, 220}, {4, 218},
{fESa T6,T15, le}a {x57 Ze, L15, $20}a
{$6a$13>$20}}
Observe that each object in a tolerance class satisfies the conditian — ¢(y) ||< ¢, and that almost all

of the objects appear in more than one class. Moreover, there would b/ twlasses if the indiscernibility
relation was used since there are no two objects with matching descriptions.

2The two relations were treated separately in the interest of clarity.
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Table 1: Tolerance Class Example
z, ¢(x) xm Plx) w ) o H(w)
ry .4518 x4 .6943 217 .4002 x4 .6079
xro 9166 x7 .9246 x1o .1910 217 .1869
xs 1398 =xg .3537 x13 .7476 x15 .8489
ry 1972 xz9 4722 w14 .4990 219 .9170
x5 .6281 x19 .4523 x15 .6289 x99 .7143

3 Perceptual image processing

Near set theory can be easily applied to images. For example, define a RG®asfe= {p1, p2, ..., pr},
wherep; = (¢,r, R,G,B)T,c € [1,M],r € [1,N], R,G, B € [0,255], andM, N respectively denote the
width and height of the image and x N = T. Further, define a square subimagefas. f with the
following conditions:

N fa...nfs=0,
f[iUfe...Ufs=f, 3)

wheres is the number of subimages jn The approach taken in the NEAR system is to restrict all subimages
to be square except when doing so violates Egr-or example, the images in the Berkeley Segmentation
Dataset [29] often have the dimensig®l x 481. Consequently, a square subimage size of 25 will produce
6240 square subimages, 96 subimages of iz, 64 subimages of siZze x 1 and 1 subimage consisting

of a single pixel. Next( can be defined as the set of all subimages,O = {f1,..., fs}, andF is a set

of functions that operate on images (seg. Section4 for examples of probe functions used in the NEAR
system or [30] for other examples). Once the/Séias been selected, the elementary sets are simply created
by grouping all objects with the same description and the quotient set is madfallphe elementary sets.
Finally, a simple example of these concepts is given in Eigihere the left image contains an octagon
with a radius of 100 pixels located at the centre of4h@ x 400 image, and the right image contains the
elementary sets obtained usiig= {$avg(fs)} and a subimage size ®0 x 10.

@) (b)

Figure 4. Example of near set theory in the context of image processa)gOriginal image, and (b)
elementary sets obtained from (a) usifigg( f).

Observe that three elementary sets are obtained indHijy. namely, the blue background, the orange
octagon interior, and the green squares along the diagonals. Theggpesmes are created by subimages
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that contain both black and white pixels (in the original image) and are locatgao the diagonals due to

the subimage size and shape, and the position and radius of the hexdigiiheAsubimages are uniformly
white or black. Thus, we are presented with perceptual information in thedbthree equivalence classes
when restricted to only being able to describe the original image with the puplotidn 58 = {pavgy(fs)}

and a subimage size @f) x 10. This example clearly demonstrates that perceptual information obtained
from the application of near set theory is represented by the elementarff@ened by the grouping of
objects with similar descriptions), and the information gained is always pezbeiith respect to the probe
functions contained ii.

4 Probe functions

This section describes the probe functions used in the NEAR system, w®lagample NEAR system
output images processed using these probe functions.

4.1 Average greyscale value

Conversion from RGB image to greyscale is accomplished using Magicke -efdject-orientated C++ API
to the ImageMagick image-processing library [31]. First, an RGB image igectad to greyscale using

Gr = 0.299R + 0.587G + 0.114B, (4)

and then the values are averaged over each subimage. An examplanigghig. 5.

\

(@) (b) (©

Figure 5: Example of average greyscale probe function: (a) Originajerfz2], (b) average greyscale over
subimages of sizé x 5, and (c) average greyscale over subimages ofisize 10.

4.2 Normalized RGB
The normalized RGB values is a feature described in [30], and the formgilzeis by

B X
- Ry +Gr+Br’

Nx
where the valuesir, G, and By are respectively the sum @i, G, B components of the pixels in each

subimage, an& € [Ryp, G, Br|]. See Fig6 for an example using this probe function. Note, these images
were produces by finding the normalized value and multiplying it by 255.
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(b) (c)

Figure 6: Example of normalized RGB probe function: (a) Original imagé, [@9 normalized R over
subimages of sizé x 5, and (c) normalized R over subimages of sigex 10.

4.3 Shannon’s entropy

Shannon introduced entropy (also called information content) as a mezsiine amount of information
gained by receiving a message from a finite codebook of message3 [&3jdea was that the gain of infor-
mation from a single message is proportional to the probability of receivinm#ssage. Thus, receiving a
message that is highly unlikely gives more information about the system thassagegewith a high prob-
ability of transmission. Formally, let the probability of receiving a messagfe: messages bg;, then the
information gain of a message can be written as

Al = log(1/pi) = —log(ps), (5)

and the entropy of the system is the expected value of the gain and is cal@date
H ==Y pilog(p).
=1

This concept can easily be applied to the pixels of a subimage. First, the ggbimaonverted to
greyscale using Edl. Then, the probability of the occurrence of grey leveln be defined g = h;/Ts,
whereh; is the number of pixels that take a specific grey level in the subimagel aisdthe total number
of pixels in the subimage. Information content provides a measure of tiabiliy of the pixel intensity
levels within the image and takes on values in the inteffudbg, L] whereL is the number of grey levels
in the image. A value of 0 is produced when an image contains all the same inteusltyand the highest
value occurs when each intensity level occurs with equal frequeddy A example of this probe function
is given in Fig.7. Note, these images were formed by multiplying the value of Shannon’s grigrp2
sincel = 256 (thus giving a maximum value of 8).

(b)

Figure 7: Example of Shannon’s entropy applied to images: (a) Original if28}e(b) Shannon’s entropy
applied to subimages of sizex 5, and (c) Shannon’s entropy applied to subimages of Kize 10.
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4.4 Pal’s entropy

Work in [33, 35] shows that Shannon’s definition of entropy has some limitsti&hannon’s definition of
entropy suffers from the following problems: it is undefined wier= 0; in practise the information gain
tends to lie at the limits of the intervé, 1]; and statistically speaking, a better measure of ignorance is 1 -
p; rather tharl /p; [33]. As aresult, a new definition of entropy can be defined with the follgwiesirable
properties:

P1: Al(p;) is defined at all points ifD, 1].

P2: lim,, .0 AI(p;) = AI(p; = 0) = k1, k1 > 0 and finite.
P3: limy, 1 AI(p;) = AI(p; = 1) = ko, ke > 0 and finite.
P4: ko < kq.

P5: With increase ip;, AI(p;) decreases exponentially.
P6: Al(p) andH, the entropy, are continuous for< p < 1.

P7: H is maximum when alp;’s are equali.e. H(p1,...,p,) < H(1/n,...,1/n).

With these in mind, [33] defines the gain in information from an event as
Al(p;) = P,

which gives a new measure of entropy as

n

H= Zpie(l—pi).

i=1

Pal’s version of entropy is given in Fi§. Note, these images were formed by first converting the original
image to greyscale, calculating the entropy for each subimage, and multiplysneathie by 94 (since the
maximum ofH is el ~1/256),

(@) (b) ()

Figure 8: Example of Pal's entropy applied to images: (a) Original image (B9Pal’'s entropy applied to
subimages of sizé x 5, and (c) Pal’s entropy applied to subimages of sizex 10.

4.5 Edge based probe functions

The edge based probe functions integrated in the NEAR system incta@oramplementation of Mallat’s
Multiscale edge detection method based on Wavelet theory [36]. The ideat isdtjes in an image occur
at points of sharp variation in pixel intensity. Mallat’s method calculates thdigmaof a smoothed image
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using Wavelets, and defines edge pixels as those that have locally maxed&grmagnitudes in the
direction of the gradient.

Formally, define a 2-D smoothing functiéiz, y) such that its integral over andy is equal to 1, and
converges to 0 at infinity. Using the smoothing function, one can definaittutiéns

00(z,y)

W (a9) = P8V ang g2 (e y) = P00

oy

which are, in fact, wavelets given the propertie# @f, y) mentioned above. Next, the dilation of a function
by a scaling factok is defined as

wy) = 5650,
Thus, the dilation by of ', andy)? is given by
Pley) = e (ey) and 3 (ey) = 503(0)
Using these definitions, the wavelet transformy¢f, i) € L?(R?) at the scale is given by
Wi f(.y) = fug(ey) and Wif(x,y) = f9i(z,y),

which can also be written as

Wiy _ (2000 g
(WEf(w)) _S<zay(f*9$)(m,y)> = sV(f *05)(z,y).

Finally, edges can be detected by calculating the modulus and angle of thergnaector defined respec-
tively as

M, f(w,y) = IWLf (2,9 + [W2f (2, )|
and
Asf(x,y) = argumentWV, f(z,y) +iW? f(z,y)),
and then finding the modulus maximum defined as pixels with modulus greater éhamatimeighbours in
the direction indicated by, f (z, y) (see [36] for specific implementation details). Examples of Mallatt's
edge detection method obtained using the NEAR system are given 8. Fig.
4.5.1 Edge present

This prob function simply returns true if there is an edge pixel contained isubienage (see.g, Fig. 10).

4.5.2 Number of edge pixels

This probe function returns the total number of pixels in a subimage belotmarmgedge (see.g, Fig.11).

4.5.3 Edge orientation

This probe function returns the average orientation of subimage pixeladietpto an edge (see.g,
Fig. 12).
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Figure 9: Example of NEAR system edge detection using Mallat’s method: r{gin@ image, (b) edges
obtained from (&), (c) original image, and (d) obtained from (c).

%\AA

Figure 10: Example of edge present probe function: (a) Edges obthimm Fig.5(a), (b) Application to
image with subimages of sizex 5, and (c) Application to image with subimages of sizex 10.

(b)

5 Equivalence class frame

This frame calculates equivalence classes using the Indiscernibility retdtiosfn. 1, i.e., given an image
X, it will calculate X .., where the objects are subimagesf See Sectior8 for an explanation of
the theory used to obtain these results. A sample calculation using this franvensigiFig.13 and was
obtained by the following steps:

1. Click Load Imagebutton.
2. Select number of features (maximum allowed is four).

3. Select features (see Sectibfor a list of probe functions).
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(@) (b) (c)

Figure 11: Example of number of edge pixels probe function: (a) Originage, (b) Application to image
with subimages of sizé x 5, and (c) Application to image with subimages of sizex 10.

(@) (b) (©)

Figure 12: Example of average orientation probe function: (a) Originajénéb) Application to image
with subimages of sizé x 5, and (c) Application to image with subimages of sizex 10.

4. Select window size. The value is taken as the square root of thearaafluare subimageg., a
value of 5 creates a subimage of 25 pixels.

5. ClickRun

The result is given in Figl3 where the bottom left window contains an image of the equivalence classes
where each colour represents a single class. The bottom right windeedsa display equivalence classes
by clicking in any of the three images. The coordinates of the mouse clicknde&the equivalence class
that is displayed. The results may be saved by clicking on the save button.

6 Tolerance class frame

This frame calculates tolerance classes using the Tolerance relationrof3et., given an image&, it
will calculate X /-, where the objects are subimagesXf This approach is similar to the one given in
Section3 with the exception that Defrl. is replaced with Defn3. A sample calculation using this frame is
given in Fig.14 and was obtained by the following steps:

1. Click Load Imagebutton.

2. Select number of features (maximum allowed is four).

Cl Laboratory TR-2009-015 12



Figure 13: Sample run of the equivalence class frame using a window §iZe>05 and B =

{¢NOI’I’T1G7 ¢Hshannor} .

Figure 14: Sample run of the tolerance class frame using a window slfe0f0, B = {¢NormG; PHshannon
ande = 0.05.

3. Select features (see Sectibfor a list of probe functions).

4. Select window size. The value is taken as the square root of thearaafluare subimageg., a
value of 5 creates a subimage of 25 pixels.

5. Seleck, a value in the intervdD, 1].
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6. Click Run

The result is given in Figl4 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation does not partifimage, the tolerance classes
are displayed upon request. For instance, by clicking on either of the twgesnall the tolerance classes
are displayed that are withinof the subimage containing the coordinates of the mouse click. Further, the
subimage containing the mouse click is coloured black.

7 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphadatpseribed in [2, 6], where the
evaluation is labelled the Near Set Index (NSI). For instance, givehdad peobe functiond3, and an image
A, this frame can perform the perceptual erosion or dilation using O, as the SE. Also, the NSl is
calculated if perceptual erosion was selected. A sample calculation usirftathis is given in Figl5and
was obtained by the following steps:

52334
152334
oo

Figure 15: Sample run of the segmentation evaluation frame using a windowfsze @, andB =

{QbNormG» ¢Hshamor}-

1. Click Load Image & Segmeiuutton.
2. Select animage clickpen

3. Select segmentation image and cli@gen Image should contain only one segment and the segment
must be whitg 255, 255, 255) and the background must be blagk 0, 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure thésdagh).

4. Select number of features (maximum allowed is four).

5. Select features (see Sectifor a list of probe functions).
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6. Select window size. The value is taken as the square root of thearaasfijuare subimageg., a
value of 5 creates a subimage of 25 pixels.

7. Click Erodeto perform perceptual erosion and segmentation evaluation. Olieke to perform
perceptual dilation (no evaluation takes place during dilation).

The result is given in Figl5 where the bottom left window contains the an image of the equivalence
classes where each colour represents a different class. The btdmvindow contains either the segments
erosion or dilation. Clicking on any of the three images will display the equicalelass containing the
mouse click in the bottom right image. The NSl is also displayed on the left hded s

8 Near image frame

This frame is used to calculate the nearness of two images using the neasasge from Edl defined
in Section2. A sample calculation using this frame is given in Fig.and was obtained by the following
steps:

Figure 16: Sample run of the near image frame using a window siz@ &f10, B = {¢NormG, PHsnanmon -
ande = 0.05.

. Click Load Imagedutton and select two images.
. Select number of features (maximum allowed is four).

. Select features (see Sectibfor a list of probe functions).

A W N

. Select window size. The value is taken as the square root of thearaasfuare subimage.,g., a
value of 5 creates a subimage of 25 pixels.

(631

. Seleck, a value in the intervdD, 1].

6. ClickRun
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The result is given in Figl6 where the left side contains the first image, and the right side contains the
second image. Clicking in any of the two images will display the tolerance cléssadoth images near
to the subimage selected by the mouse click. The subimage matching the cosrdfrthtemouse click is
coloured black and all subimages that are near to the black subimageeagelisusing a different colour
for each class. The NM is also displayed on the left hand side.

9 Feature display frame

This frame is used to display the output of processing an image with a speoifie function. A sample
calculation using this frame is given in Fi§j7 and was obtained by the following steps:
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Figure 17: Sample run of the feature display frame.

Click Load Imagebutton and select an image.
Select features (see Sectibfor a list of probe functions).

Select probe function

L A

Click Display feature
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