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Abstract

This report presents the Near set Evaluation And Recogn{iNEAR) system. The goal of the
NEAR system is to extract perceptual information from inggsing near set theory, which provides
a framework for measuring the perceptual nearness of abjddte contributions of this report are an
introduction to the NEAR system as an application of neaithssry to image processing, a feature-
based approach to solving the image correspondence problatna first step toward automating the
extraction of perceptual information from images whererghis interest in measuring the degree of
resemblance between images.

1 Introduction

The goal of the NEAR system is to demonstrate applications of the near sey fhesented in [1-10]
(see also, [11]). The system implements a Multiple Document Interface X 4e€,e.g., Fig.1) where
each separate processing task is performed in its own child frame. Thaofijethe near set sense) in this
system are subimages of the images being processed and the probeBifietures) are image processing
functions defined on the subimages. The system was written in C++ andes@med to facilitate the
addition of new processing tasks and probe functiorGurrently, the system performs six major tasks,
namely, displaying equivalence and tolerance classes for an imagermiexj segmentation evaluation,
measuring the nearness of two images, performing Content Based Imagpy&€CBIR), and displaying
the output of processing an image using a specific probe function. Tistris organized as follows:
Section2 gives some background on near set theory, Se&ijoresents the nearness measures implmented
in the NEAR system, Sectichdemonstrates the application of near set theory to images, Ségii@sents
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Parts of the Graphical User Interface (GUI) were inspired by the @prted in [12] and the wxWidgets example in [13].



the probe functions implemented in the NEAR system, and Se6tgives an explanation of the settings
used to perform approximate nearest neighbour searching. Finadlyp&&7-10 describe the operation of
the GUIL.

Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on sets of perceptual objects with matchingptiess (seee.g.[7,11]). Specif-
ically, let O represent a set of perceptual objects, O consists of objects that have their origin in the
physical world. Each perceptual object can be described by a fuobgons, a real-valued function repre-
senting a feature of a perceptual object. The description of an abjea? is given by

b(x) = (d1(2), da(2), - -, di(2), ..., (),

wherel is the length of the description and eagliz) is a probe function that describes the objectThe
notion of a probe function in near sets is inspired by Monique Pavel {#dgre a probe function that is
invariant relative to a transformation of the images results in matching fundgatufe) values. In a near
set approach, a real-valued funcipn O — R, O a set of images, is probe functionif, and only if ¢
represents an image feature with values that are in the description ofegopericobject, in particular, in the
description of an image [15-17]. Furthermore, alseain be defined that represents all the probe functions
used to describe an objeet Next, a perceptual systef®, F) consists of a non-empty sét of sample
perceptual objects and a non-empty Badf real-valued functions € F such thaty : O — R.

Definition 1 Perceptual Indiscernibility Relation [7,18]. Let (O, F) be a perceptual system. For every
B C T theperceptual indiscernibility relatior s is defined as follows:

~5={(z,y) € O x O : [ ¢(x) — ¢(y) [l,= 0},

where||- ||, represents thés norm.
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The perceptual indiscernibility relation is a variation of the one given byavlék in 1981 [18]. Fur-
thermore, notice that equivalence is defined with respect to the descrgitem object,i.e. objects are
considered equivalent when the features used to describe them aesihe

Using the indiscernibility relation (together with the probe functiong3j a set of objects can be
partitioned into classes of objects with matching descriptions such that eashhels the highest possible
object resolution under the indiscernibility relation. These classes are eddimentary sets or equivalence
classes and are defined as

T/, ={2' €0 |2 ~px}.

Observe that a single object is sufficient to label the class since all objextdass have the same descrip-
tion. Moreover, the set of all equivalence classes induced by the panitia set using the indiscernibility
relation is called a quotient set and is given as

O/NB = {ZL’/NB ’ €T € O}

Definition 1 provides the framework for comparisons of sets of objects by introdwingncept of
nearness within a perceptual system. Sets can be considered neatheacivhen they have “things” in
common. In the context of near sets, the “things” can be quantified bytsljeequivalence classes. The
simplest example of nearness between sets sharing “things” in common issthevban two sets have
indiscernible elements. This idea leads to the definition of a weak nearteisre

Definition 2 Weak Nearness Relatior{7]. Let (O, F) be a perceptual system and [§tY C O. A setX

is weakly near to a sét” within the perceptual syste(®, F) (X<rY') iff there arex € X andy € Y and
there isB C IF such thatz ~3 y. In the case where sef§, Y are defined within the context of a perceptual
system, thelX, Y are weakly near each other.

An example of disjoint sets that are weakly near each other is given i2@&pvhere each colour represents
an equivalence class. These sets are weakly near each other sihcgetsoshare objects belonging to
the same equivalence class. As a practical example of weakly near sessjar a database of images
where each image is described by some feature veiatorthe images are considered perceptual objects
and the feature vectors are the object descriptions. Examples of feaneréhe values of different colour
models [19] or moments [20]. In this case, two disjoint sets of images ardywaeedr each other if each set
contains one or more images with descriptions that match an image in the other set.

Next, the notion of nearness in Definitidhcan be strengthened by considering equivalence classes
rather than objects which is the case in the following definition.

Definition 3 Nearness Relatior{7]. Let (O, F) be a perceptual system and §tY C O. A setX is near
to a setY” within the perceptual syste(®, F)(X i Y) iff there areF,,Fo, C F and f € F and there are

A€ O/NFI,B € O/NFZ,C €0/, suchthatA C X, B C Y,andA, B C C. If a perceptual system is
understood, than a sé¥ is near to a set’.

2.1 Tolerance near sets

A perception-based approach to discovering resemblances betweessifeads to a tolerance class form
of near sets that models human perception in a physical continuum vieweslgoritext of image tolerance
spaces. A tolerance space-based approach to perceiving imagelasees hearkens back to the obser-
vation about perception made by Ewa Ortowska in 1982 [21] (see, &2}, |.e., classes defined in an
approximation space serve as a formal counterpart of perception.

The termtolerance spacevas coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [23]. A tolerance space is a Eesupplied with a binary relatior (i.e., a subsetr C X x X)
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Figure 2: Examples of Definitiord & 3: (a) Example of Definitior2, (b) example OO/NFl, (c) example
of O Jroiy and (d) example o® . ; showing (together with (b) and (c)) that séfsandY are near to each
other according to DefinitioB.

that is reflexive (for ale € X, x ~ z) and symmetrici(e., forall z,y € X, z ~ y impliesy ~ z) but
transitivity of ~ is not required. When dealing with perceptual objects (especially, coam®m images), it
is sometimes necessary to relax the equivalence condition of D&drfacilitate observation of associations
in a perceptual system. This variation is called a tolerance relation that slg@t@nother form of near
sets [3,4,8,9] and is given in Defa.

Definition 4 Perceptual Tolerance Relatior{8,9] (see [10,24] for applications)et(O, F) be a perceptual
system and let € R. For every3 C IF theperceptual tolerance relatiésg . is defined as follows:

g = {(z,9) € 0Ox O :| ¢(x) — dy) |,< €}

For notational convenience, this relation is writte¥y; instead of=~3 . with the understanding that is
inherent to the definition of the tolerance relation.

Under the tolerance relation there is a need to define a method by which dojegsouped together
when transitivity no longer applies. In an equivalence class, an objeddied to a class if its description
matches the description of the objects already in the class, which by definiéail ahe same. However,
the lack of transitivity gives rise to the two very different classes, hamalighbourhood and a pre-class.
A neighbourhoods defined as

N(z)={ycO:2=5. y}.

In contrast, all the pairs of objects within a pre-class must satisfy the tckenatation. Fo3 C F and
e € R,asetX C Ois apre-classiff x =5 . y for any pairz,y € X, and a maximal pre-class with respect
to inclusion is called a tolerance class.

Notice, objects can belong to more than one tolerance class. Consequenfiylldiving notation is
required to differentiate between classes and facilitate discussions iagadrg sections. The set of all
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Table 1: Tolerance Class Example
r, ¢(x) wmo Plx) w ) o H(w)
r1 4518 xg .6943 x1; .4002 x5 .6079
ro 9166 x7 .9246 x5 .1910 x;7 .1869
xs 1398 xg .3537 x13 7476 x15 .8489
xy 7972 x9 4722 x14 .4990 x19 .9170
x5 .6281 x19 .4523 x15 .6289 x99 .7143

tolerance classes using only the object®ins given by H~; _(O) (also called the cover aP), a single
tolerance class is represented@yc H=, _(O), and the set of all tolerance classes containing an object
is denoted byC, C Hx~, (O).

The following simple example highlights the need for a tolerance relation as svdikmonstrates the
construction of tolerance classes from real data. Consider the 2Gobjél@ablel that where¢(z;)| = 1.
Lettinge = 0.1 gives the following tolerance classes:

H~y (O) = {{m1,28, 710,711}, {71, 9, T10, 711, T14},
{@2, w7, 218, 719},
{23, 712, 217},
{®4, 713, 220}, {74, 218},
{5, 26,215, 716}, {25, T6, 215, T20 },
{w6, 213, 220} }

Observe that each object in a tolerance class satisfies the corjdition — ¢(y) || < ¢, and that almost all
of the objects appear in more than one class. Moreover, there would bty wlasses if the indiscernibility
relation was used since there are no two objects with matching descriptions.

Definition 5 Tolerance Near Setd8, 9]. Let (O, ) be a perceptual system and kete R, B C F. Fur-
ther, letX,Y C O, denote disjoint sets with coverings determined by the tolerance relagion and let
H~, (X), H~, (Y) denote the set of tolerance classes %0rY’, respectively. SetX,Y" are tolerance
near setdff there are tolerance classe$ € Hx~, (X), B € H~,_(Y) such thatdx B.

3 Nearness measure

The nearness measure was first proposed in working with the indisidigyniblation and equivalence
classes [11]. The approach was that the degree of nearness @f segperceptual system is determined
by the cardinalities of the equivalence classes that have the same desd@ptiolea that is visualized in
Fig. 3). For example, sets that are considered “more similar” as in&a&j, should contain more pairs of
equivalence classes (from the respective sets) that have matchargptiess. Consequently, the nearness
measure is determined by counting the number of objects in equivalencesdlhashave matching descrip-
tions. Thus, the sets in Fig(a)are closer (more near) to each other in terms of their descriptions than the
sets in Fig4(b). Moreover, this notion can be generalized to tolerance classes as is¢hia tiae following
definition.

Cl Laboratory TR-2010-017 5



Figure 3: Visualization of nearness measure based on equivalenseschasd the indiscernibility relation.
Similar images should produce equivalence classes that are evenlyddbhétiweenX andY. This is
measured by counting the number of objects that belong toXetsdY for each equivalence class, and
comparing the results.

(@) (b)

Figure 4: Example of degree of nearness between two sets: (a) Higkedafghearness, and (b) low degree
of nearness.

Definition 6 Nearness Measurd5, 10,11] Let(O,F) be a perceptual system, withe R, and5 C F.
Furthermore, letX andY be two disjoint sets and léf = X U Y. Then anearness measubetween two
sets is given by

-1
min(|CNX]|,|[[CNY])

tN M~ R X,Y = C . C ]
o ) (CeH% (Z)’ |> CeHg (Z)| |max(|CﬂX|,|C’mY|)

3.1 Other measures

This section introduces two additional measures for determining the degrereilr sets resemble each
other. These measures were created out of a need for making compasfabe results generated by the
nearness measure. Here, one of two approaches could have bestigated. Namely, the nearness measure
could be compared with a content-based image retrieval system or meaati® ¢hrrently regarded as
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the best approach for a database with given characteristics. Or, dneese measure could be compared
with measures that determine nearness in a manner comparatVelfo In the NEAR system, the latter
approach was taken. As a result, approaches were created, basedsting theories, that measure the
distance between sets.

3.1.1 Hausdorff Distance

The Hausdorff distance is used to measure the distance between sets incaspaste [25] (see [26] for
English translation), and is defined as

dr(X,Y) = max{ sup inf d(z,y), sup inf d(x, ,
(X, ¥) = max( sup inf d(r.y). sup inf d(r.))

wheresup andinf refer to the supremum and infimum, adgz, y) is the distance metric (in this case it
is thel? norm). The distance is calculated by considering the distance from a slegiers in a sefX to
every element of sét, and the shortest distance is selected as the infimumésgerig. 5). This process

is repeated for every € X and the largest distance (supremum) is selected as the Hausdorff distdmee
setX to the seft”. This process is then repeated for thelsdtecause the two distances will not necessarily
be the same. Keeping this in mind, the measiifé [5] is defined as

-1

tHD~B_,€(X,Y):< > \C\) Y C(VI-du(CNX,CNY)).
(2)

CeHep CEHEB,E(Z)

Observe, that low values of the Hausdorff distance correspond tdartdggree of resemblance than larger
distances. Consequently, the distance is subtracted from the largescdigta Also, notice that the
performance of the Hausdorff distance is poor for low values since, as tolerance classes start to become
equivalence classegd. ase — 0), the Hausdorff distance approaches 0 as well. Thus, if each toeranc
class is close to an equivalence class, the resulting distance will be mdrogasequently the measure will
produce a value near to 1, even if the images are not alike. In contrash@sases, the members of classes
tend to become separated in feature space, and, as a result, only eléissssgects that have objects iXi

that are close to objects i will produce a distance close to zero. What does this imply? If for a larger
value ofe, relatively speaking, the set of objects= X U Y still produces tolerance classes with objects
that are tightly clustered, then this measure will produce a high measure MWaitiee, that this distinction

is only made possible i is relaxed. Otherwise, all tolerance classes will be tightly clustered.

Figure 5: Example demonstrating a single step in determining the Hausdorfickdtatween two sets.

The Hausdorff distance is a natural choice for comparison withhAh&/ nearness measure because it
measures the distance between sets in a metric space. Recall, that toléaases are sets of objects with
descriptions irn-dimensional feature space. The nearness measure evaluates théapliteoance class
between setX andY, where the idea is that a tolerance class should be evenly divided bekvaedY’,
if the two sets are similar (or the same). In contrast, the Hausdorff distaresunes the distance between
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two sets. Here the distance being measured is between the portions of adelelass in setX andY'.
Thus, two different measures can be used on the same data, namely thed®lelasses obtained from the
union of X andY’.

3.1.2 Hamming Measure

The Hamming measure introduced in this section was inspired by the Hamming meal2#], and since
the Hamming measure is not defined in terms of sets, it was modified to give theifglo

FHMay(X,Y) = IHgl(Z) © Y 1(avgHC N X) — avgr(C N Y)| < th),

wherel(-) is the indicator function and avg@' N X) is the average feature vector used to describe objects
in C'N X. For example, the average feature vector can be calculated by addihg @dllues for a specific
feature in the feature vector @i N X, and then dividing by the number of objects. The idea behind this
measure is that, for similar sets, the average feature vector of the portiolefance class (obtained from

Z = X UY) that lies inX should have values similar to the average feature vector of the portion of the
tolerance class that lies . Observe, that ifh = ¢, this function will simply count the number of classes
that are not singletons.,e. class that contain more than one element, since all objects have descriptions
whose distances are less thaif th = ¢, than this measure will perform best for low levelsspsince only

sets that resemble each other will contain classes with cardinality greatertba®@therwise, this measure
will perform in a similar manner toH D, namely, this measure will produce high values for classes which
have objects inX that are close to objects ¥ with respect tah.

4 Perceptual image processing

Near set theory can easily be applied to images by partitioning an image into gsirmad considering
each subimage as an object in the near set seaseach subimage is a perceptual object, and each object
description consists of the values obtained from techniques of imagesgimogen the subimage (sexg.

Fig. 6). Moreover, this technique of partitioning an image, and assigning feataters to each subimage

is an approach that has also been traditionally used in content-based etrégyal.

Formally, define a RGB image gs= {p1,p2,...,pr}, Wherep; = (¢,7, R,G,B)T,c € [1,M],r €
[1,N], R,G, B € |0,255],andM, N respectively denote the width and height of the image/@ndN = 7.
Further, define a square subimagefas f suchthatyNfo...Nfs =0, andfiU fy...Ufs = f, wheres
is the number of subimages fin Next, O can be defined as the set of all subimages,O = {f1,..., fs},
andF is a set of image processing descriptors or functions that operate onamalgen, the nearness of
two images can be discovered by partitioning each of the images into subimablettisug these represent
objects in a perceptual systeirg, let the setsX andY represent the two images to be compared where
each set consists of the subimages obtained by partitioning the images.tfidgeet of all objects in this
perceptual system is given iy= X UY.

5 Probe functions

This section describes the probe functions used in the NEAR system, sl agample NEAR system
output images processed using these probe functions.

Cl Laboratory TR-2010-017 8



Figure 6: Example demonstrating the application of near set theory to imayes)ynthe image is parti-
tioned into subimages where each subimage is considered a perceptasl afjeobject descriptions are
the results of image processing techniques on the subimage.

5.1 Average greyscale value

Conversion from RGB image to greyscale is accomplished using Magicke -efiject-orientated C++ API
to the ImageMagick image-processing library [28]. First, an RGB image igectad to greyscale using

Gr = 0.299R + 0.587G + 0.114B, (1)

and then the values are averaged over each subimage. An examplaniggiig. 7.

\ '.

@) (b) (©

Figure 7: Example of average greyscale probe function: (a) Originajerfi20], (b) average greyscale over
subimages of sizé x 5, and (c) average greyscale over subimages ofigize 10.

5.2 Normalized RGB
The normalized RGB values is a feature described in [30], and the formgileis by

- X
" Rr+Gr+Br’

Nx
where the valuesi;, G, and By are respectively the sum @i, G, B components of the pixels in each

subimage, an& € Ry, G, Br|. See Fig8 for an example using this probe function. Note, these images
were produces by finding the normalized value and multiplying it by 255.

Cl Laboratory TR-2010-017 9



(b) (©

Figure 8: Example of normalized RGB probe function: (a) Original imagé, [@1) normalized R over
subimages of sizé x 5, and (c) normalized R over subimages of sigex 10.

5.3 Shannon’s entropy

Shannon introduced entropy (also called information content) as a mezdine amount of information
gained by receiving a message from a finite codebook of messaged [@2ijdea was that the gain of infor-
mation from a single message is proportional to the probability of receivinméssage. Thus, receiving a
message that is highly unlikely gives more information about the system thassageewith a high prob-
ability of transmission. Formally, let the probability of receiving a mesgagfe: messages bg, then the
information gain of a message can be written as

AT =log(1/p;) = —log(pi), (2

and the entropy of the system is the expected value of the gain and is cal@gate
H=- Zpi log(p;).
i=1

This concept can easily be applied to the pixels of a subimage. First, the gbimaonverted to
greyscale using Ed.. Then, the probability of the occurrence of grey leveln be defined gs = h; /T,
whereh; is the number of pixels that take a specific grey level in the subimagel aisdthe total number
of pixels in the subimage. Information content provides a measure of tiebidy of the pixel intensity
levels within the image and takes on values in the intejfvdbg, L] whereL is the number of grey levels
in the image. A value of 0 is produced when an image contains all the same intewuslyand the highest
value occurs when each intensity level occurs with equal frequedgyA® example of this probe function
is given in Fig.9. Note, these images were formed by multiplying the value of Shannon’s grigrg2
sinceL = 256 (thus giving a maximum value of 8).

(b)

Figure 9: Example of Shannon’s entropy applied to images: (a) Original if@dge(b) Shannon’s entropy
applied to subimages of sizex 5, and (c) Shannon’s entropy applied to subimages ofKize 10.
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5.4 Pal's entropy

Work in [32, 34] shows that Shannon’s definition of entropy has some limitati@hannon’s definition of
entropy suffers from the following problems: it is undefined whee= 0; in practise the information gain
tends to lie at the limits of the intervé), 1]; and statistically speaking, a better measure of ignorance is 1 -
p; rather thanl /p; [32]. As a result, a new definition of entropy can be defined with the follgwliesirable
properties:

P1: AI(p;) is defined at all points ifD, 1].

P2: lim,, .0 AI(p;) = AI(p; = 0) = k1, k; > 0 and finite.
P3: limp, 1 AI(p;) = Al(p; = 1) = ko, k2 > 0 and finite.
P4: ko < kq.

P5: With increase ip;, AI(p;) decreases exponentially.
P6: Al(p) andH, the entropy, are continuous for< p < 1.

P7: H is maximum when alp;’s are equali.e. H(p1,...,pn) < H(1/n,...,1/n).
With these in mind, [32] defines the gain in information from an event as
AI(p;) = el =7,
which gives a new measure of entropy as
n
H = Zpie(l_p")-
=1

Pal's version of entropy is given in Fig0. Note, these images were formed by first converting the original
image to greyscale, calculating the entropy for each subimage, and multiplyéneathie by 94 (since the
maximum of H is e!~1/256),

(@) (b) ()

Figure 10: Example of Pal’s entropy applied to images: (a) Original imade(31Pal’s entropy applied to
subimages of sizé x 5, and (c) Pal’s entropy applied to subimages of dizex 10.

5.5 Edge based probe functions

The edge based probe functions integrated in the NEAR system incte@aoramplementation of Mallat’s
Multiscale edge detection method based on Wavelet theory [35]. The ideat isdhes in an image occur
at points of sharp variation in pixel intensity. Mallat's method calculates thédigmaof a smoothed image

Cl Laboratory TR-2010-017 11



using Wavelets, and defines edge pixels as those that have locally maxed#&rgrmagnitudes in the
direction of the gradient.

Formally, define a 2-D smoothing functidtiz, y) such that its integral over andy is equal to 1, and
converges to 0 at infinity. Using the smoothing function, one can definaitiatidons

00(z,y)

0w = P8V ang g2 (e y) = 2200

oy

which are, in fact, wavelets given the propertie# @f, y) mentioned above. Next, the dilation of a function
by a scaling factos is defined as

(wy) = 5652,
Thus, the dilation by of !, and? is given by
Ply) = 50! (ey) and E(ey) = 503(0)
Using these definitions, the wavelet transformy¢f, i) € L?(R?) at the scale is given by
W, f(z,y) = fxis(zy) and WZf(x,y) = f*¢3(z,y),

which can also be written as

Wslf(x’y) o i(f * 95)($,y) e .
(ng(x,y)> = <28:(f * 93)($7 y)) - SV(f 93)(96,3,/)

Finally, edges can be detected by calculating the modulus and angle of thengngector defined respec-
tively as

M, f(z,y) = WL (2,9)]? + [W2f(z,y)|?
and
Asf(a,y) = argumentWy f(x,y) +iW2 f(z,y)),
and then finding the modulus maximum defined as pixels with modulus greater ghamotimeighbours in
the direction indicated by, f(z,y) (see [35] for specific implementation details). Examples of Mallatt's
edge detection method obtained using the NEAR system are given ihIFig.
5.5.1 Edge present

This prob function simply returns true if there is an edge pixel contained isubienage (see.g, Fig. 12).

5.5.2 Number of edge pixels

This probe function returns the total number of pixels in a subimage belorgamedge (see,g, Fig. 13).

5.5.3 Edge orientation

This probe function returns the average orientation of subimage pixeladie{pto an edge (see.qg,
Fig. 14).
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Figure 11: Example of NEAR system edge detection using Mallat's metho@r{ginal image, (b) edges
obtained from (a), (c) original image, and (d) obtained from (c).

@) (b)

Figure 12: Example of edge present probe function: (a) Edges otthma Fig.7(a), (b) Application to
image with subimages of siZzex 5, and (c) Application to image with subimages of sizex 10.

5.6 Grey level co-occurrence matrices

Image texture is an important part of perceiving images. Texture is difficudescribe, and is generally
associated with a region of the image, rather than restricted to a specific@ewmrally, there are statistical
and structural approaches to identifying texture [36]. The texturalifes used in this thesis are based on
second order measures, as reported in [37—39], where the appsoeansidered second-order, since the
measures are not derived directly from the pixel values themselvesthet on statistics generated from
relationships between groups of two pixels given by a grey-level coroence matrix. In other words, the
features are based on the average spatial relationship between pires j&v].

In general, the grey level co-occurrence matrix is defined with resp#oe angle and distance between
pixel pairs. However, to keep things simple, the grey level co-occoerematrix will first be defined with
respect to horizontally adjacent pixels, which corresponds to an ahgieand a distance = 1 in the
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(@) (b) ()

Figure 13: Example of number of edge pixels probe function: (a) Originage, (b) Application to image
with subimages of sizé x 5, and (c) Application to image with subimages of sizex 10.

@) (b) (c)

Figure 14: Example of average orientation probe function: (a) Originaj@néb) Application to image
with subimages of sizé x 5, and (c) Application to image with subimages of sizex 10.

traditional literature. Using the notation given in [37], let = {1,2,...,N,} andL, = {1,2,...,N,}
respectively denote the horizontal and vertical spatial domains of deyrejimage quantized tdy, levels,
i.e. the grey levels in an image are in the 6et= {0,1,..., N, — 1}. Then,L, x L, is the set of all pixel
coordinates belonging to an imagewherel : L, x L, — G, and the grey level co-occurrence matrix is
given as

P, 7) = [{((k, 1), (m,n)) € (Ly X Lg) X (Ly X L) :
m—k=0n—-10=1,1(k1)=1i1I(m,n)=7j}. (3)

For clarity, an example of E®.is given graphically in Figl5. One can add the degree and distance t@BEq.
by the following simple modification,

P(i,5,d,0%) = [{((k,1), (m,n)) € (Ly X Lg) X (Ly x Ly) :
m—k=0n—-10=11(k1)=1i1(m,n)=j}.

For anglest5°,90°, and135°, see [37]. Finally, the following textural features can be derived fiioergrey
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level co-occurrence matrix,

Maximum Probability max(p;),
Z7j
Ny—1Ny—1
Contrast > (i —§)?pijs
i=0 =0
Ng—1 Ny—1
Uniformity (also called Energy) > pij,and
i=0 =0
Ny—1Ng—1
Homogeneity ZO ZO %,
i= j=

wherep;; = P(i,j) divided by the sum of the elements in In brief, the maximum probability returns
the strongest response &%, contrast measures the intensity contrast between a pixel and its neighbou
uniformity is the angular second moment, and homogeneity measures the dpatinkss of the distribution

of elements inP to the diagonal (see [40] for further details). Finally, Fi§.gives examples of each of the
grey level co-occurance matrix probe functions implemented in the NEARmys

3[3[1]1]2]0]0]0 O 1 2 3
3lol3]2[1]2]3]3
2(3]2[olo]1[0]0 0[6]4]2]2
ol1|2]ol1[2]3]3 1121614l2
olo|3]2]ol2]2]3
[ 33233 215111116
321331 [1]0]0
113 ol2]0[1]7 312(2]|5](6

—
QD
Rad

(b)

Figure 15: Example demonstrating the creation of a grey level co-ocm@matrix. (a) Quantized image,
and (b) grey level co-occurrence matrix@fandd = 1.

| —
71y N

-

Figure 16: Example of GLCM probe functions using subimages of 5ize5: (a) Original image, (b)
maximum probability, (c) contrast, (d) uniformity, and (e) homogeneity.
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5.7 Zernike moments

Zernike moments can be used to provide region-based descriptors ofgatinah are invariant with respect
to rotation and reflections [20]. Moreover, a small set of Zernike momemigicaracterize the global shape
of a pattern effectively, where the lower order moments represent tialgdbape, and the higher order
moments represent the detail [41-43].

As given in [20], for a continuous image functigiiz, y), the Zernike moment of orderwith repetition
m is defined as

Apm ://D f(@,y) Vi (z, y)dady, (4)

where the double integral is defined over the unit dizk= {(z,y) : 22 + y*> < 1}, n is a non-negative
integer, andn is an integer that makes resultof— |m| even and non-negative. In E4. V,,,,,(z,y) is a
Zernike function defined as '

Vnm(xv y) = an(P)€Jm97
wherep = /22 + 42, § = tan~!(y/z), and the radial Zernike polynomial,.,,(p) is defined by

(n—[ml)/2 (—1)5(71 _ S)!pnﬁ?s

s g )y

As explained in [20], Eg4 cannot be applied directly to digital images. Consequently, a mapping of the
digital image must occur. Let'(i,j5),i = 1,...,N,5 = 1,..., N denote anV x N image, thenF(i, j)

can be mapped onto a functigifx;, y;) defined onf—1, 12 according to

f(l’mllz):F(%])JZL7N7]:17>N7

wherez; = (2i— N —1)/N andy; = (2j — N —1)/N. Note, it can be assumed, without loss of generality,
that f(z;,v;) is a function with all its pixels inside the unit circle [20]. Moreover, since thegens not
analog, but actually a discrete function, the following approximation carsbd to calculate the Zernike
moments from sampled data

Rom(p) =

Anm = Zzwnm(fl:hyj)f(xiayj)u (5)
i j

wherei and; are taken such that;, y;) € D,

nits (uits
Wnm (l’i, yj) = / / Vnm(x7 y)dmd:%
Y

A
Ti—F

andA = 2/N is the pixel width/height. Finallyw,,(x;, y;) can be computed using
Wi (3, y5) = NPV (i, 95).- (6)

Note, it was shown in [20] that using Ef.& 6 is a highly inaccurate approach to computing Zernike
moments due to both the geometric error caused by the difference betwetetalherea covered by the
pixels in Eg.5 and the actual area of the unit circle, as well as the error due to thexamjton of
wnm (24, y;) in EQ. 6. Instead, a method for calculating Zernike moments in polar coordinates(tadn
the Cartesian method given above) is given that eliminates the previously methtorors. Nevertheless,
Eq.5 & 6 were still used to generate rotationally invariant features due to the follawampns. First, only
low order moments were useel.g.n < 4), and evidence in [20] demonstrated that the results of using only
low orders of Zernike moments produced magnitudes with acceptable lexebo$, both in comparisons of
the magnitudes on a constant image and for use in reconstructing imagestA&ss have reported success
using low order Zernike moments for content-based image retrievalgsgpi4, 45]), and implementation
of Eq.5 & 6 is simple and fast. See Fifj7 for examples of the probe functions based on Zernike moments
implemented in the NEAR system.
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Figure 17: Example of Zernike probe functions using subimages obsizé: (a) Original image, (b) - (i)
in{(1,1),(2,0),(2,2),(3,1),(3,3),(4,0),(4,2), (4,4)}.

5.7.1 CIELUV Colour Space

The CIE 1976L*u*v* Colour Space (also written CIELUV) is a uniform colour space where tiadidean
distances between points in the space is proportional to human perceptidfeEnces in colour [46]. In
contrast, the RGB colour space represents a non-uniform space gjithcteto the human visual system.
The L*u % v+ colour components are given (in terms of the XYZ colour components) byotlwving
equations [47]:

1

Y Y
L= 116(s-) /3 _ 16, (5-) > 0.008856,

n n
Y Y
L* = 903.3(=), (=) < 0.008856
(Yn)7 (YTL) —_ ?
u* = 13L*(u —ul),
v' = 13x L*(v — ),

where

W =4X/(X +15Y +3%), 4, =4X,/(X, + 15Y, + 3Z,),
o =9Y/(X +15Y +32), v, =9Y,/(X, + 15Y,, + 3Z,),

andY,,, X,,, andZ,, are based on the reference white point. For the results presented in #igs the D50
reference white point was used giving valuepf= 1, X,, = 0.964221, and Z,, = 0.825211. Similarly,
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the XYZ colour components can be calculated using

X 0.607 0.174 0.200| |R
Y| =029 0587 0.114| |G
A 0.000 0.006 1.116| |B

Examples of the the average U and V components produced by the NEgdRnsge given in Figl8.

Figure 18: Example of CIE based probe functions using subimages of size (a) Original image, (b)
average U, and (c) average V.

6 Approximate Nearest Neighbours

This section describes the theory of approximate nearest neighbauhisgg and introduces the Fast Li-
brary for Approximate Nearest Neighbours (FLANN) [48]. Furthhis section describes the selection of
parameters for configuring FLANN. FLANN is employed by the NEAR systenmprove the speed of
tolerance class calculation (seeg.[11]). Approximate nearest neighbour searching can be desribed as
follows. Given a set of point® = {pi,...,p,} in and-dimensional vector spac¥ and a query point

q € X, the nearest neighbour search problem is defined as finding the pdithat is closest tg [49].
This problem arises in many research areas, especially in computer asidmor high dimensional data,
there is no known algorithm that performs much better than a linear seattoh déta points i [49]. As a
result,a-approximaté nearest neighbour searching has been introduced where query imbs ceduced
by orders of magnitude while sill achieving near-optimal accuracyafapproximate nearest neighbour to
a query pointy € X is defined ap € X if dist(p,q) < (1 + «)dist(p*, q) wherep* is the true nearest
neighbour [49].

FLANN uses two data structures to efficiently perform approximate neaegghbour searches, namely
the randomized kd-tree algorithm and the hierarchical k-means tree alg¢4ifi. A kd-tree organizes the
data using a binary tree where the tree nodes are points for8ince points belong to é&dimensional
vector space, each node must have an associated splitting dimdrsiard{mension used to divide subse-
guent nodes in the tree). The next data point added to the tree is askiggier the left or right child node
depending on whether its value in the splitting dimension is less than or greatehéhealue of the current
node. The kd-tree algorithm used in FLANN is called randomized becaasptitting dimension for each
node is selected randomly from the fifgtdimensions that have the greatest variance [49]. The other data
structure used is the hierarchical k-means tree. This structure is ctsatedursionj.e. the set of data is
partitioned intoX regions using the k-means clustering algorithm and then each region ispaggiioned
into K regionsetc. The recursion is terminated when there are less fiafata points in a region [49].

FLANN is the ideal library for performing approximate nearest neighlsearching because of the op-
tion for automatic optimization. The choice of algorithm used for approximateseaeighbour searching

Note: the symbok is being used instead ef(as is traditional in the literature) to avoid confusion with the tolerance relation.
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is highly dependent on the dataset [49]. Consequently, the FLANN yilbva@s an option to select automati-
cally the search algorithm and to optimize the input parameters of the seleoteithaty Both options are
based on the points iR. Optimization is guided by a set of parameters specified by the user in theifadlow
equation

wheres is the search time for the number of vectors in the sample dataisahe build timeyn = m;/mgy
is the ratio of memory used for the tree and memory used to store theuglatathe importance of build
time over search time, and,, is the importance of memory overhead [49]. Setting= 0 means that the
fastest search time is desired, and similarly, setiipg= 0 means that faster search time is more important
then memory requirements. Additionally, optimization is also performed basedeotieired precision
(percentage of query points for which the correct nearest neighibdound) of the results from a nearest
neighbour search (see [49] for more details). To generate the resgtsnped here, a target precision of 0.8
was used together withy, = w,,, = 0.

The following describes the FLANN parameters (see [48] for more details)

e Auto. Parm. Select: Determines whether the NEAR system uses the FLANNMyliteature of
automatic parameter selection. Selecting yes adds significant time to calculatt@sgr Also note,
for comparing a query image to a directory, the automatic parameter selectiors diefore each
image comparison.

e Algorithms: The algorithm to use for building the index. The possible valuesliaear’, ‘kdtree’,
‘kmeans’, and ‘composite’. The ‘linear’ option does not create anyxnileises brute-force search
in the original dataset points, ‘kdtree’ creates one or more randomizéek&s, ‘kmeans’ creates a
hierarchical kmeans clustering tree and ‘composite’ is a mix of both kdtré&aeans trees.

e Checks: Denotes the number of times the tree(s) in the index should beivebutraversed. A higher
value for this parameter would give better search precision, but alsoralestime.

e cb index: This parameter (cluster boundary index) influences the wagretion is performed in the
hierarchical kmeans tree. When cb index is 0, the next kmeans domain xploecel is choosen to
be the one with the closest centre. A value greater than zero takes intmattoe size of the domain.

e Trees: The number of randomized kd-trees to create. This parametquigeceonly when the algo-
rithm used is ‘kdtree’.

e Branching: The branching factor to use for the hierarchical kmeapscteation. While kdtree is
always a binary tree, each node in the kmeans tree may have sevecidsaepending on the value
of this parameter. This parameter is required only when the algorithm udauéshs’.

e lterations: The maximum number of iterations to use in the kmeans clusteringvategebuilding
the kmeans tree. A value of -1 used here means that the kmeans clusterifd)lsh performed until
convergence. This parameter is required only when the algorithm udadéshs’.

e Centers Init.: The algorithm to use for selecting the initial centers whennparfig a kmeans clus-
tering step. The possible values are ‘random’ (picks the initial cluster isergedomly), ‘gonzales’
(picks the initial centers using the Gonzales algorithm), and ‘kmeanspjs(fhie initial centers using
the algorithm suggested in [50]).

e Target Precision: A number between 0 and 1 specifying the percentdge approximate nearest-
neighbor searches that return the exact nearest-neighbor. Usilgea alue for this parameter gives
more accurate results, but the search takes longer.
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e Build Weight: Specifies the importance of the index build time compared to the steaighbor
search time. In some applications it's acceptable for the index build step to lakg éime if the
subsequent searches in the index can be performed very fast. mapihleeations it's required that
the index be built as fast as possible even if that leads to slightly lowerstares

e Memory Weight: Used to specify the trade off between time (index build time sadis¢ime) and
memory used by the index. A value less than 1 gives more importance to the tinteaspea value
grerater than 1 gives more importance to the memory usage.

e Num. of Threads: This parameter is specific to the NEAR system. The grovesved in finding
tolerance classes is to determine all the tolerance classes containing & sjigedt, then proceed to
the next object in the queue, making these calculations easy to performallepgeee.g.[11]). As
a result, the NEAR system is multithreaded in order to reduce computation timeprogpam was
written on a quad-core machine, and thus the default number of threads is 4

7 Equivalence class frame

This frame calculates equivalence classes using the Indiscernibility retdtioefn. 1, i.e., given an image
X, it will calculate X, , where the objects are subimagesof A sample calculation using this frame is
given in Fig.19 and was obtained by the following steps:

[=Ea )

= Z . g
B Fle Window Help

[ Londinege |

Figure 19: Sample run of the equivalence class frame using a windowfsize dandB = {¢average Grey -

1. Click Load Imagebutton and select an image.
2. Click theSet Parameterbutton.

3. Select window size. The value is taken as the square root of thearassfluare subimageg., a
value of 5 creates a subimage of 25 pixels.

4. Select number of features (maximum allowed is 24).
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5. Select features (see Sectfor a list of probe functions).

6. Click Run

The result is given in Figl9. The bottom left window contains an image of the equivalence classegwher
each colour represents a single class. The bottom right window is usedplayda single equivalence
classes by clicking in any of the three images. The coordinates of the malksgatermine the equivalence
class that is displayed. The results may be saved by clicking on the save. button

8 Tolerance class frame

This frame calculates tolerance classes using the Perceptual TolerlaterRof Defn 4, where the objects
are subimages oK. A sample calculation using this frame is given in F2f§. and was obtained by the
following steps:

1 ST@s

=
i

[serusmns]

11:41:05: Creating
11:41:05: Constructing casses ..
1:41:07: Dane (Cick on mages t see blerance classes).

Figure 20: Sample run of the tolerance class frame using a window ske<at0, 18 features, and = 0.7.

1. Click Load Imagebutton and select an image.

2. Click theSet Parameterbutton.

w

Select window size. The value is taken as the square root of thearaafjuare subimage,g., a
value of 5 creates a subimage of 25 pixels.

Select, a value in the intervdD, v/1] wherel is the number of features (length of object description).
Select number of features (maximum allowed is 24).

Select features (see Sectwfor a list of probe functions).

R A

Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectio for details).
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8. ClickRun

The result is given in Fig20 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation does not partiiimage, the tolerance classes
are displayed upon request. For instance, by clicking on either of the twgesna window appears letting
the user display each tolerance classes containing the subimage seldabedioyse. Further, the subimage
containing the mouse click contains an ‘X’, and the subimages can be colahite or black.

9 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphaatpseribed in [2, 6], where the
evaluation is labelled the Near Set Index (NSI). For instance, givehad peobe functiond3, and an image
A, this frame can perform the perceptual erosion or dilation using O, as the SE. Also, the NSI is
calculated if perceptual erosion was selected. A sample calculation usiritathisis given in Fig21 and
was obtained by the following steps:

[E=ar=n

= : - -
B e Window Hep
{ jment.

Figure 21: Sample run of the segmentation evaluation frame using a windowfsZze& @, and 5 =
{CbEdge Presel}t-

1. Click Load Image & Segmetuutton.
2. Select animage clickpen

3. Select segmentation image and cli@gen Image should contain only one segment and the segment
must be whitg255, 255, 255) and the background must be blagk 0, 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure thésdagh).

4. Click eitherErodeto perform perceptual erosion and segmentation evaluatioDijlate to perform
perceptual dilation (no evaluation takes place during dilation).

5. Select window size. The value is taken as the square root of thearaasfluare subimageg., a
value of 5 creates a subimage of 25 pixels.
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6. Select number of features (maximum allowed is four).
7. Select features (see Sectwfor a list of probe functions).

8. ClickRun

The result is given in Fig2l. The bottom left window contains an image of the equivalence classes
where each colour represents a different class. The bottom righbwidntains either the erosion or
dilation of the segment. Clicking on any of the three images will display the elguisa class containing
the mouse click in the bottom right image. The NSI is also displayed on the laftdide (if applicable).

10 Nearimage frame

This frame is used to evaluate the similarity of images using the similarity measueesigi8ectior8. The
user has the option of comparing a pair of images (and viewing the resultingrtoteclasses), or comparing
a query image to an entire directory of images. The following two subsectidtinethe steps involved
under both options.

10.1 Evaluating a pair of images

The steps involved in comparing a pair of images is a follows, and sample dokphis process is given in
Fig. 22.

1201 messure ..
1200735t (ko s o el doed.

Figure 22: Sample run comparing a pair of images using a window siz@>0R0, 18 features, and = 0.7.

. Select théNew near image windoweon, select File-New near image window, or press Alt+N.
. SelectA pair of imagegthe default value) from th8elect type of Comparisavindow, and click OK.

. Click Load Imagesutton and select two images.

A WO N P

. Click theSet Parameterbutton.
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5. Select window size. The value is taken as the square root of thearaasfluare subimageg., a
value of 5 creates a subimage of 25 pixels.

Select, a value in the intervdD, /1] wherel is the number of features (length of object description).
Select number of features (maximum allowed is 24).

Select features (see Sectfor a list of probe functions).

© ©o N o

Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectio for details).

10. ClickRun

The result is given in Fige2 where the left side contains the first image, and the right side contains the
second image. Clicking in any of the two images will bring up a window that allogsiffer to view each
tolerance class containing the subimage selected by the mouse. Furthehithage containing the mouse
click contains an ‘X’, and the subimages can be coloured white or black, &le similarity of the images
is evaluated using the measures described in Se8tiwhere the results are displayed on the left hand side.

10.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a directory containing inmged$ollows, and sample
output for this process is given in Fig3.

%]

B Fle Window Help

BT

(Load Query e + ov. |
[t poromaers |

Hid

Figure 23: Sample run comparing an image to a directory of images using awsige of20 x 20, 18
features, and = 0.2.

1. Select theNew near image windowon, select File-New near image window, or press Alt+N.

2. SelecQuery image with a directory of imagé®m theSelect type of Comparisanindow, and click
OK.
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3. Click Load Query Image + Dir.button and select an image plus a directory containing images for
comparison with query image.

4. Click theSet Parameterbutton.

(631

. Select window size. The value is taken as the square root of thearaafuare subimage.g., a
value of 5 creates a subimage of 25 pixels.

. Select, a value in the intervdD, /1] wherel is the number of features (length of object description).
. Select number of features (maximum allowed is 24).

. Select features (see Sect®for a list of probe functions).

© 00 N O

. Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectio for details).

10. ClickRun

The result is given in Fig22 where the left side contains the query image, and the right side contains
an image from the directory. Clicking in any of the two images will bring up a wintlat allows the
user to view the images from the directory in the order they were rankedelsetbcted similarity measure
(see Sectior8 for a description of the measures). In addition, three output files aasgecteontaining the
similarity measure of each image in the database, sorted from most similar toifeiet. g=inally, three
figures are also displayed plotting the similarity measures vs. images in the diriectall three measures.
Note, the results are sorted from best to worst, so the output files areeglsioed to related the abscissae
to actual image files.

11 Feature display frame

This frame is used to display the output of processing an image with a speoifie function. A sample
calculation using this frame is given in Fig4 and was obtained by the following steps:

[

Figure 24: Sample run of the feature display frame.
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Click Load Imagebutton and select an image.
Select features (see Sect®for a list of probe functions).

Select probe function

A w0 NP

Click Display feature
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