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Abstract

This report presents the Near set Evaluation And Recogn{iNEAR) system. The goal of the
NEAR system is to extract perceptual information from imsgsing near set theory, which provides
a framework for measuring the perceptual nearness of abjddte contributions of this report are an
introduction to the NEAR system as an application of neaithssry to image processing, a feature-
based approach to solving the image correspondence probleina rst step toward automating the
extraction of perceptual information from images whererghis interest in measuring the degree of
resemblance between images.

1 Introduction

The goal of the NEAR system is to demonstrate applications of the near sey fhesented in [1-10]
(see also, [11]). The system implements a Multiple Document Interface Y K4e€,e.g., Fig.1) where
each separate processing task is performed in its own child frame. Thaofijethe near set sense) in this
system are subimages of the images being processed and the probenBifieatures) are image processing
functions de ned on the subimages. The system was written in C++ and esignetd to facilitate the
addition of new processing tasks and probe functiorGurrently, the system performs six major tasks,
namely, displaying equivalence and tolerance classes for an imagermiexy segmentation evaluation,
measuring the nearness of two images, performing Content Based Imagpy&€CBIR), and displaying
the output of processing an image using a speci ¢ probe function. Thisrtrés organized as follows:
Section2 gives some background on near set theory, Se&ijoresents the nearness measures implmented
in the NEAR system, Sectichdemonstrates the application of near set theory to images, Ségii@sents
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Parts of the Graphical User Interface (GUI) were inspired by the @prted in [12] and the wxWidgets example in [13].



the probe functions implemented in the NEAR system, and Se6tgines an explanation of the settings
used to perform approximate nearest neighbour searching. Finatlyp&&7-10 describe the operation of
the GUIL.

A Near st Evaation And Recognton (NEAR)

Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on sets of perceptual objects with matchingptiess (seee.g.[7,11]). Specif-
ically, let O represent a set of perceptual objedts, O consists of objects that have their origin in the
physical world. Each perceptual object can be described by a fuobgons, a real-valued function repre-
senting a feature of a perceptual object. The description of an ob is given by

wherel is the length of the description and eaclix) is a probe function that describes the objeciThe
notion of a probe function in near sets is inspired by Monique Pavel {#dgre a probe function that is
invariant relative to a transformation of the images results in matching fundgatufe) values. In a near
set approach, a real-valued funcion. O ! < , O a set of images, is probe functionif, and only if
represents an image feature with values that are in the description ofegopexicobject, in particular, in the
description of an image [15-17]. Furthermore, aFsein be de ned that represents all the probe functions
used to describe an objext Next, a perceptual systeh®;Fi consists of a non-empty sé&t of sample
perceptual objects and a non-emptyBatf real-valued functions 2 F suchthat : O! R.

De nition 1 Perceptual Indiscernibility Relation [7,18]. LethO;Fi be a perceptual system. For every
B  F theperceptual indiscernibility relationg is de ned as follows:

= f(x;y)20 O:k (X) (y) k,=0g;

wherek k, represents thé ; norm.
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The perceptual indiscernibility relation is a variation of the one given byavl&k in 1981 [18]. Fur-
thermore, notice that equivalence is de ned with respect to the descripfian object,i.e. objects are
considered equivalent when the features used to describe them aesibe

Using the indiscernibility relation (together with the probe functiondBjn a set of objects can be
partitioned into classes of objects with matching descriptions such that eashhels the highest possible
object resolution under the indiscernibility relation. These classes are eddlmentary sets or equivalence
classes and are de ned as

x- ,=1x°20jx% gxg
Observe that a single object is suf cient to label the class since all obijeetslass have the same descrip-
tion. Moreover, the set of all equivalence classes induced by the panitia set using the indiscernibility
relation is called a quotient set and is given as
O- ,=fx- ,jx20g

De nition 1 provides the framework for comparisons of sets of objects by introdwingncept of
nearness within a perceptual system. Sets can be considered neathecivhen they have “things” in
common. In the context of near sets, the “things” can be quanti ed by th{equivalence classes. The
simplest example of nearness between sets sharing “things” in common issthevban two sets have
indiscernible elements. This idea leads to the de nition of a weak nearrlaismne

De nition 2 Weak Nearness Relation[7]. LethO;Fi be a perceptual system and ktY  O. A setX

is weakly near to a set within the perceptual systeh®; Fi (X/_gY) iff there arex 2 X andy 2 Y and
thereisB F suchthatx g Y. Inthe case where se¥§ Y are de ned within the context of a perceptual
system, theiX; Y are weakly near each other.

An example of disjoint sets that are weakly near each other is given i2@pvhere each colour represents
an equivalence class. These sets are weakly near each other sihcgetsoshare objects belonging to
the same equivalence class. As a practical example of weakly near sessjar a database of images
where each image is described by some feature veiatorthe images are considered perceptual objects
and the feature vectors are the object descriptions. Examples of feaneréhe values of different colour
models [19] or moments [20]. In this case, two disjoint sets of images ardywaedr each other if each set
contains one or more images with descriptions that match an image in the other set.

Next, the notion of nearness in De nitioB can be strengthened by considering equivalence classes
rather than objects which is the case in the following de nition.

De nition 3 Nearness Relation[7]. LethO; Fi be a perceptual system and ktY  O. A setX is near
to a setY within the perceptual systeh®; Fi(X / ¢ Y) iff there areF1;F,; Fandf 2 F and there are
A20._;B2O: F2;C 2 O- , suchthatA X;B Y, andA; B C. If a perceptual system is
understood, than a set is near to a set .

2.1 Tolerance near sets

A perception-based approach to discovering resemblances betweessifeads to a tolerance class form
of near sets that models human perception in a physical continuum vieweslgoritext of image tolerance
spaces. A tolerance space-based approach to perceiving imagelasees hearkens back to the obser-
vation about perception made by Ewa Or owska in 1982 [21] (see, &2, [.e., classes de ned in an
approximation space serve as a formal counterpart of perception.

The termtolerance spaceavas coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [23]. A tolerance space is axesupplied with a binary relatioh (i.e, asubset X X))
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Figure 2: Examples of De nition2 & 3: (a) Example of De nition2, (b) example ofO- £ (c) example
of O- £y and (d) example oD- . showing (together with (b) and (c)) that setsandY are near to each
other according to De nitior8.

f

that is re exive (for allx 2 X, x ' x) and symmetrici(e.,, forallx;y 2 X, x "' yimpliesy ' x) but
transitivity of* is not required. When dealing with perceptual objects (especially, coem®m images), it
is sometimes necessary to relax the equivalence condition of D&jfrfacilitate observation of associations
in a perceptual system. This variation is called a tolerance relation that slgeteanother form of near
sets [3,4,8,9] and is given in Defa.

De nition 4 Perceptual Tolerance Relation[8,9] (see [10,24] for applications).ethO; Fi be a perceptual
system and lét 2 R. For everyB  F the perceptual tolerance relatiens.- is de ned as follows:

=sr=f(xy)20 O:k (x) (Mk, "g

For notational convenience, this relation is writterg instead of=g. with the understanding that is
inherent to the de nition of the tolerance relation.

Under the tolerance relation there is a need to de ne a method by which objectgouped together
when transitivity no longer applies. In an equivalence class, an objedded to a class if its description
matches the description of the objects already in the class, which by de nitgoallathe same. However,
the lack of transitivity gives rise to the two very different classes, hamalighbourhood and a pre-class.
A neighbourhoods de ned as

N(x)=fy2O0:Xx=g" Y0

In contrast, all the pairs of objects within a pre-class must satisfy the tolenratation. FoB  F and
"2 R,asetX Oisapre-classff x =g y for any pairx;y 2 X, and a maximal pre-class with respect
to inclusion is called a tolerance class.

Notice, objects can belong to more than one tolerance class. Consequenfiylldiving notation is
required to differentiate between classes and facilitate discussions iagadrg sections. The set of all
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Table 1: Tolerance Class Example
i (X)X (X)X (X)X (x)
X1 .4518 xg .6943 xi11 .4002 Xx16 .6079
X2 9166 x7 .9246 xi1» .1910 xi17 .1869
X3 .1398 xg .3537 X33 .7476 Xxi13 .8489
Xq 1972 X9 4722 Xi14 .4990 Xx19 .9170
X5 .6281 X190 .4523 X315 .6289 Xo9 .7143

tolerance classes using only the object®irs given byH- .. (O) (also called the cover dD), a single
tolerance class is represented®y H- .. (O), and the set of all tolerance classes containing an okject
is denoted b\Cx  H- .. (O).

The following simple example highlights the need for a tolerance relation as svdikmonstrates the
construction of tolerance classes from real data. Consider the 2Gobjé@ablel that wherg (x;)j = 1.
Letting" = 0:1 gives the following tolerance classes:

H=;. (O) = ff X1;Xs; X105 X120; f X1; X9; X10; X11; X140;
fX2;X7; X18; X190;
fX3;X12; X170;
fX4;X13; X200; f X4; X180;
fXs5; Xe; X15; X169; f X5 X6; X15; X200;
fXe; X13; X2009

Observe that each object in a tolerance class satis es the conHitigr) (y) k ", and that almost all
of the objects appear in more than one class. Moreover, there would bty wlasses if the indiscernibility
relation was used since there are no two objects with matching descriptions.

De nition 5 Tolerance Near Sets[8,9]. LethO; Fi be a perceptual system and le2 R;B  F. Fur-
ther, letX;Y  O; denote disjoint sets with coverings determined by the tolerance relatin and let
H-.. (X);H=. (Y) denote the set of tolerance classes XoiY , respectively. Set;Y are tolerance
near setdff there are tolerance classés 2 H-,. (X);B 2 H-4. (Y) such thatA/ _B.

3 Nearness measure

The nearness measure was rst proposed in working with the indisdésnitelation and equivalence
classes [11]. The approach was that the degree of nearness @f sgperceptual system is determined
by the cardinalities of the equivalence classes that have the same desd@pticlea that is visualized in
Fig. 3). For example, sets that are considered “more similar” as in&a&j, should contain more pairs of
equivalence classes (from the respective sets) that have matchargptiess. Consequently, the nearness
measure is determined by counting the number of objects in equivalencesdlhashave matching descrip-
tions. Thus, the sets in Fig(a)are closer (more near) to each other in terms of their descriptions than the
sets in Fig4(b). Moreover, this notion can be generalized to tolerance classes as is¢éha tiae following

de nition.

Cl Laboratory TR-2010-017 5



e

Figure 3: Visualization of nearness measure based on equivalensesha®d the indiscernibility relation.
Similar images should produce equivalence classes that are evenlyddhéti@eenX andY. This is
measured by counting the number of objects that belong toXsetadY for each equivalence class, and
comparing the results.

(@) (b)

Figure 4: Example of degree of nearness between two sets: (a) Higkedafgnearness, and (b) low degree
of nearness.

De nition 6 Nearness Measure[5, 10,11] LethO;Fi be a perceptual system, with2 R, andB  F.
Furthermore, letX andY be two disjoint sets and I&@ = X [ Y. Then anearness measubetween two
sets is given by

1
X X _..min(jC\ Xj;j[C\ Y]).

tNM -,. (X;Y) = iCj i . =
CoH- . (2) CoH- . (2) max(jC\ Xj;jC\ Y}J)

3.1 Other measures

This section introduces two additional measures for determining the degreredr sets resemble each
other. These measures were created out of a need for making compasfabe results generated by the
nearness measure. Here, one of two approaches could have bestiigated. Namely, the nearness measure
could be compared with a content-based image retrieval system or meaati® ¢hrrently regarded as
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the best approach for a database with given characteristics. Or, dhneese measure could be compared
with measures that determine nearness in a manner compardbl&lto In the NEAR system, the latter
approach was taken. As a result, approaches were created, basedsting theories, that measure the
distance between sets.

3.1.1 Hausdorff Distance

The Hausdorff distance is used to measure the distance between sets incaspaste [25] (see [26] for
English translation), and is de ned as

dy (X;Y ) =maxf sup inf d(x;y); sup inf d(x;y) g;
x2X Y2Y y2Y X2X

wheresup andinf refer to the supremum and in mum, ami{x;y) is the distance metric (in this case it
is thel? norm). The distance is calculated by considering the distance from a siagiert in a seX to
every element of set, and the shortest distance is selected as the in mum égefFig. 5). This process
is repeated for every 2 X and the largest distance (supremum) is selected as the Hausdorff distémee
setX tothe setY . This process is then repeated for the\sdtecause the two distances will not necessarily
be the same. Keeping this in mind, the meaghii®® [5] is de ned as
X SR p_
tHD -,.(X;Y) = iCj ICiC I dy(C\ X;C\ Y)):
C2H-y. (2) C2H-y. (2)

Observe, that low values of the Hausdorff distance correspond tdartdggree of resemblance than larger
distances. Consequently, the distance is subtracted from the largescdista Also, notice that the
performance of the Hausdorff distance is poor for low value's since, as tolerance classes start to become
equivalence classesd. as" ! 0), the Hausdorff distance approaches 0 as well. Thus, if each togeranc
class is close to an equivalence class, the resulting distance will be mdropasequently the measure will
produce a value near to 1, even if the images are not alike. In contrdsh@asases, the members of classes
tend to become separated in feature space, and, as a result, only sléissggects that have objects K

that are close to objects i will produce a distance close to zero. What does this imply? If for a larger
value of", relatively speaking, the set of objeds= X [ Y still produces tolerance classes with objects
that are tightly clustered, then this measure will produce a high measure MWaitiee, that this distinction

is only made possible If is relaxed. Otherwise, all tolerance classes will be tightly clustered.

Figure 5: Example demonstrating a single step in determining the Hausdorfickdtatween two sets.

The Hausdorff distance is a natural choice for comparison withiNtM nearness measure because it
measures the distance between sets in a metric space. Recall, that toléaases are sets of objects with
descriptions irl-dimensional feature space. The nearness measure evaluates thé apiteoance class
between setX andY, where the idea is that a tolerance class should be evenly divided beXvaedY ,
if the two sets are similar (or the same). In contrast, the Hausdorff distaresunes the distance between

Cl Laboratory TR-2010-017 7



two sets. Here the distance being measured is between the portions of adelelass in setX andY .
Thus, two different measures can be used on the same data, namely thedelelasses obtained from the
union of X andY .

3.1.2 Hamming Measure
The Hamming measure introduced in this section was inspired by the Hamming meal#], and since
the Hamming measure is not de ned in terms of sets, it was modi ed to give thenfiolgp

tHM =, (XY ) = 1 1(javgr(C\ X) avgr(C\ Y)j th);

H:B(Z)J CZH:B(Z)

wherel( ) is the indicator function and av§@ \ X) is the average feature vector used to describe objects
in C\ X. For example, the average feature vector can be calculated by addihg adllues for a speci c
feature in the feature vector @\ X, and then dividing by the number of objects. The idea behind this
measure is that, for similar sets, the average feature vector of the portiaolefance class (obtained from

Z = X [ Y)thatlies inX should have values similar to the average feature vector of the portion of the
tolerance class that lies 1. Observe, that ith = ", this function will simply count the number of classes
that are not singletong.,e. class that contain more than one element, since all objects have descriptions
whose distances are less tharf th = ", than this measure will perform best for low levels'psince only

sets that resemble each other will contain classes with cardinality greatertba®@therwise, this measure
will perform in a similar manner ttHD , namely, this measure will produce high values for classes which
have objects irX that are close to objects M with respect tdh.

4 Perceptual image processing

Near set theory can easily be applied to images by partitioning an image into g@siraad considering
each subimage as an object in the near set seaseach subimage is a perceptual object, and each object
description consists of the values obtained from techniques of imagesgiogen the subimage (sexg.

Fig. 6). Moreover, this technigue of partitioning an image, and assigning feataters to each subimage

is an approach that has also been traditionally used in content-based etrégyal.

[1;N],R;G;B 2 [0;255] andM; N respectively denote the width and height of the imageMndN = T.
Further, de ne a square subimagefas f suchthat,\ fo:::\ fs=;;andf1[ fo:::[ fs= f; wheres

andF is a set of image processing descriptors or functions that operate onamalgen, the nearness of
two images can be discovered by partitioning each of the images into subimablettiaug these represent
objects in a perceptual systeirg, let the setsX andY represent the two images to be compared where
each set consists of the subimages obtained by partitioning the images.tfidert of all objects in this
perceptual systemis given &y= X [ Y.

5 Probe functions

This section describes the probe functions used in the NEAR system, @&l agiample NEAR system
output images processed using these probe functions.

Cl Laboratory TR-2010-017 8



Figure 6: Example demonstrating the application of near set theory to imayes)ynthe image is parti-
tioned into subimages where each subimage is considered a perceptesl atjeobject descriptions are
the results of image processing techniques on the subimage.

5.1 Average greyscale value

Conversion from RGB image to greyscale is accomplished using Magicke-efiject-orientated C++ API
to the ImageMagick image-processing library [28]. First, an RGB image gt to greyscale using

Gr =0:299R + 0:587G + 0:114B; 1)

and then the values are averaged over each subimage. An exampleniggiig. 7.

\ '.

@) (b) (©

Figure 7: Example of average greyscale probe function: (a) Originajerfizo], (b) average greyscale over
subimages of sizB 5, and (c) average greyscale over subimages ofize 10.

5.2 Normalized RGB
The normalized RGB values is a feature described in [30], and the formgikeis by

X

Ny = :
X Rt + Gt + By’

where the valueRt; Gt; andB are respectively the sum &; G;B components of the pixels in each
subimage, anX 2 [Rt1;Gt;Bt]. See Fig8 for an example using this probe function. Note, these images
were produces by nding the normalized value and multiplying it by 255.

Cl Laboratory TR-2010-017 9
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Figure 8: Example of normalized RGB probe function: (a) Original imagé, [@1) normalized R over
subimages of sizé 5, and (c) normalized R over subimages of sife 10.

5.3 Shannon's entropy

Shannon introduced entropy (also called information content) as a mezsine amount of information
gained by receiving a message from a nite codebook of messagesl[B@jidea was that the gain of infor-
mation from a single message is proportional to the probability of receivinméssage. Thus, receiving a
message that is highly unlikely gives more information about the system thassageewith a high prob-
ability of transmission. Formally, let the probability of receiving a messagfen messages bg, then the
information gain of a message can be written as

| =log(1=p) = log(pi); 2)

and the entropy of the system is the expected value of the gain and is cal@gate

X0
H = pi log(pi):
i=1
This concept can easily be applied to the pixels of a subimage. First, the gibimaonverted to

greyscale using Ed.. Then, the probability of the occurrence of grey leveln be de ned ag; = h;=Ts,
whereh; is the number of pixels that take a speci c grey level in the subimage Tamslthe total number
of pixels in the subimage. Information content provides a measure of tiebildy of the pixel intensity
levels within the image and takes on values in the intei®dbg, L] whereL is the number of grey levels
in the image. A value of 0 is produced when an image contains all the same infeusltyand the highest
value occurs when each intensity level occurs with equal frequeryA® example of this probe function
is given in Fig.9. Note, these images were formed by multiplying the value of Shannon's gribgrg2
sinceL = 256 (thus giving a maximum value of 8).

(b)

Figure 9: Example of Shannon's entropy applied to images: (a) Original if@dge(b) Shannon's entropy
applied to subimages of size 5, and (c) Shannon's entropy applied to subimages of Hize 10.
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5.4 Pal's entropy

Work in [32, 34] shows that Shannon's de nition of entropy has some limitesticShannon's de nition of
entropy suffers from the following problems: it is unde ned whan= 0; in practise the information gain
tends to lie at the limits of the intervfd; 1]; and statistically speaking, a better measure of ignorance is 1 -
pi rather tharl=p; [32]. As aresult, a new de nition of entropy can be de ned with the follog/mhesirable
properties:

P1: | (p) is de ned at all points if0; 1].

P2:limp1 o 1(pi)= 1(pi =0)= ki;ky> Oand nite.

P3:limp: 1 1(pi)= 1(pi=1)= kg;kz > Oand nite.

P4: ko <k 1.

P5: With increase ip;, |(p;) decreases exponentially.

P6: | (p) andH, the entropy, are continuous for p 1.

P7: H is maximum when alp;'s are equali.e. H(p1;:::;pn) H(1=n;:::;1=n).
With these in mind, [32] de nes the gain in information from an event as

() = et P,

which gives a new measure of entropy as

H = X pie(l pi):
i=1

Pal's version of entropy is given in Fig0. Note, these images were formed by rst converting the original
image to greyscale, calculating the entropy for each subimage, and multiplyéneathe by 94 (since the
maximum ofH is el 17256),

(@) (b) ()

Figure 10: Example of Pal's entropy applied to images: (a) Original imade (B/LPal's entropy applied to
subimages of sizB 5, and (c) Pal's entropy applied to subimages of di@e 10.

5.5 Edge based probe functions

The edge based probe functions integrated in the NEAR system inctaoramplementation of Mallat's
Multiscale edge detection method based on Wavelet theory [35]. The ideat isdhes in an image occur
at points of sharp variation in pixel intensity. Mallat's method calculates théigmaof a smoothed image

Cl Laboratory TR-2010-017 11



using Wavelets, and de nes edge pixels as those that have locally maxiadiegr magnitudes in the
direction of the gradient.

Formally, de ne a 2-D smoothing function(x; y) such that its integral over andy is equal to 1, and
converges to O at in nity. Using the smoothing function, one can de ne timetions

@(xy) _ @(xy).
@x @y

which are, in fact, wavelets given the properties ©f, y) mentioned above. Next, the dilation of a function
by a scaling factos is de ned as

Yxy) = and  %(x;y)

Y= L XYy
s(X,Y)— 82 (Sv S)
Thus, the dilation by of 1, and 2is given by

1 1
Ixy) = 2 Yxy) and Z(xy)= o 2(x;y):

Using these de nitions, the wavelet transformfdi; y) 2 L2(R?) at the scals is given by
Wit (y)=f  J(xy) and W (xy)=f  2(xy);
which can also be written as

! I
Wi (xy) _ . &F  xy) _ o
W2 (xiy) S %y(f Jxy) Y (f )xy):

Finally, edges can be detected by calculating the modulus and angle of thengnzector de ned respec-
tively as q
Msf (xy) = JWET (X y)j2 + JWET (x;y)j2

and

Asf (x;y) = argumentWsf (x;y) + IWEF (x;y));
and then nding the modulus maximum de ned as pixels with modulus greater tleatwih neighbours in
the direction indicated byAsf (x;y) (see [35] for speci ¢ implementation details). Examples of Mallatt's
edge detection method obtained using the NEAR system are given ibhIFig.
5.5.1 Edge present

This prob function simply returns true if there is an edge pixel contained isubinage (see.g, Fig. 12).

5.5.2 Number of edge pixels

This probe function returns the total number of pixels in a subimage belorgamgedge (see,g, Fig. 13).

5.5.3 Edge orientation

This probe function returns the average orientation of subimage pixeladietpto an edge (see.qg,
Fig. 14).
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(@) (b)

© (d)

Figure 11: Example of NEAR system edge detection using Mallat's metho@®r{gihal image, (b) edges
obtained from (a), (c) original image, and (d) obtained from (c).

@) (b) (©

Figure 12: Example of edge present probe function: (a) Edges ottama Fig.7(a), (b) Application to
image with subimages of siZze 5, and (c) Application to image with subimages of sife 10.

5.6 Grey level co-occurrence matrices

Image texture is an important part of perceiving images. Texture is diffcultescribe, and is generally
associated with a region of the image, rather than restricted to a speci ¢ @igakrally, there are statistical
and structural approaches to identifying texture [36]. The texturalifea used in this thesis are based on
second order measures, as reported in [37—39], where the appsoeansidered second-order, since the
measures are not derived directly from the pixel values themselvesthet on statistics generated from
relationships between groups of two pixels given by a grey-level coroence matrix. In other words, the
features are based on the average spatial relationship between pires j&v].

In general, the grey level co-occurrence matrix is de ned with resjoeitie angle and distance between
pixel pairs. However, to keep things simple, the grey level co-occoerematrix will rst be de ned with
respect to horizontally adjacent pixels, which corresponds to an ah@leand a distance = 1 in the

Cl Laboratory TR-2010-017 13
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Figure 13: Example of number of edge pixels probe function: (a) Originage, (b) Application to image
with subimages of sizé 5, and (c) Application to image with subimages of sif2 10.

@) (b) (©

Figure 14: Example of average orientation probe function: (a) Originajénéb) Application to image
with subimages of sizé 5, and (c) Application to image with subimages of sife 10.

traditional literature. Using the notation given in [37], et = f1;2;:::;NygandLy = f1;2;:::;Nyg
respectively denote the horizontal and vertical spatial domains of deyreimage quantized th 4 levels,
i.e. the grey levels in an image are inthe &t f0;1;:::;Ng 1g. Then,Ly Ly isthe set of all pixel
coordinates belonging to an imagewherel : Ly Ly ! G, and the grey level co-occurrence matrix is
given as

P@EJ) = if((k1);(min)) 2 (Ly Lyx) (Ly Lx):
m k=0;n I=21;1(k;D=1il(mn)=jg: (3

For clarity, an example of E@Q.is given graphically in Figl5. One can add the degree and distance t&3Eq.
by the following simple modi cation,

P(i;j;d; 0) = jf ((kiD)i(min)) 2 (Ly Lx) (Ly Ly):
m k=0;n I=21;1(k;D)=1il(m;n)=jgj:

For angles5 ;90 ; and135, see [37]. Finally, the following textural features can be derived frioergrey
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level co-occurrence matrix,

Maximum Probability max(pj );
1)
Np 1Np 1
Contrast (i §)2%pi;
i=0 j=0
i i Np 1N§> 1
Uniformity (also called Energy) p% -and
i=0 =0
Np 1Np 1

Pij

Homogeneity et

i=0 j=0

wherep; = P(i;j ) divided by the sum of the elementsfh In brief, the maximum probability returns
the strongest response Bf, contrast measures the intensity contrast between a pixel and its neighbou
uniformity is the angular second moment, and homogeneity measures the dpatinbss of the distribution

of elements irP to the diagonal (see [40] for further details). Finally, Fi§.gives examples of each of the
grey level co-occurance matrix probe functions implemented in the NEARMmys

0O 1 2

W N P O
NN o
Nl | o
el
olo|N[N]|®

&)

RPIWIFRP|IO|IOIN|W|W
RPIN[RP[O|lRPR|IW|O|W

Plolw|dv|iw|lo|lw]|©
Plolw|lw|lw|o|w]|©

NiRr|lw|lo|lr|lo]|r|™
ol—‘Nl\)l\)l_‘l\)o

Clwlw|Nv|o|o|IN]|F-

WlW[lrrlw|NdIN|W]F-

—
D

R
—~
O
~

Figure 15: Example demonstrating the creation of a grey level co-ocmgmatrix. (a) Quantized image,
and (b) grey level co-occurrence matrix®@fandd = 1.

@) (b) (© (d) (e)

Figure 16: Example of GLCM probe functions using subimages of 5ize5: (a) Original image, (b)
maximum probability, (c) contrast, (d) uniformity, and (e) homogeneity.
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5.7 Zernike moments

Zernike moments can be used to provide region-based descriptors ofgatinah are invariant with respect
to rotation and re ections [20]. Moreover, a small set of Zernike momeatsoharacterize the global shape
of a pattern effectively, where the lower order moments represent tihalgdbape, and the higher order
moments represent the detail [41-43].

As given in [20], for a continuous image functidx; y), the Zernike moment of orderwith repetition
m is de ned as YAVA

Anm = S f (X Y)Vam (X;y)dxdy; (4)

where the double integral is de ned over the unit dBk= f(x;y) : x>+ y?2 1g, n is a non-negative
integer, andm is an integer that makes resultof j mj even and non-negative. In E4,. Vom (X;Y) is a
Zernike function de ned as '

Vom (X;¥) = Ram ( )€™ ;

where = P xZ+y2  =tan !(y=x), and the radial Zernike polynomiRym ( ) is de ned by

(nj)(nj)=2 ( 1)s(n S)!pn 2s

| n+jmj
st

Ram( )=

=0 s M gyp
As explained in [20], Eg4 cannot be applied directly to digital images. Consequently, a mapping of the

digital image must occur. Ldt(i;j );i = 1;:::;N;j =1;:::;N denote arN N image, therF (i;j )

wherex; =(2i N 1)=Nandy; =(2j N 1)=N. Note, it can be assumed, without loss of generality,
thatf (x;;yi) is a function with all its pixels inside the unit circle [20]. Moreover, since thegens not
analog, but actually a discrete function, the following approximation carsbd to calculate the Zernike
moments from sampled data X X
Kom = Wnm (Xi; ¥i)F (Xi5Y5); 5)

i
wherei andj are taken such thék;;y;) 2 D,

Xit 3 z Vit 7

Wnm (Xi;Yj) = Vo (X; y)dxdy;

Xi 7 Yi 7
and =2 =N is the pixel width/height. Finallywnm (Xi;Yy;j) can be computed using
Wam (Xi5Yi)  2Vam (Xi3¥)): (6)

Note, it was shown in [20] that using Ef.& 6 is a highly inaccurate approach to computing Zernike
moments due to both the geometric error caused by the difference betwetetalhegrea covered by the
pixels in Eg.5 and the actual area of the unit circle, as well as the error due to thexamton of
Wnm (Xi;Yj) in Eq. 6. Instead, a method for calculating Zernike moments in polar coordinatesi(tatn
the Cartesian method given above) is given that eliminates the previously methtorors. Nevertheless,
Eq.5 & 6 were still used to generate rotationally invariant features due to the followaspns. First, only
low order moments were usee.¢.n  4), and evidence in [20] demonstrated that the results of using only
low orders of Zernike moments produced magnitudes with acceptable lexebos$, both in comparisons of
the magnitudes on a constant image and for use in reconstructing imagesoth&s have reported success
using low order Zernike moments for content-based image retrievalgsepi4, 45]), and implementation
of Eq.5 & 6 is simple and fast. See Fifj7 for examples of the probe functions based on Zernike moments
implemented in the NEAR system.
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@) (b) (© (d) (e)

(f) ©) (h) @

Figure 17: Example of Zernike probe functions using subimages obsizé: (a) Original image, (b) - (i)
inf(1;1);(2;0);(2;2);(3;1);(3;3); (4;0); (4 2); (4; 4)0.

5.7.1 CIELUV Colour Space

The CIE 197 u v Colour Space (also written CIELUV) is a uniform colour space where tiadidean
distances between points in the space is proportional to human perceptiffeinces in colour [46]. In
contrast, the RGB colour space represents a non-uniform space gjitbcteto the human visual system.
TheL u v colour components are given (in terms of the XYZ colour components) byotlwving
equations [47]:

_ Y 1=3 Y .
L = 116 Y—n 16,(Yn > 0:008856
Y Y
L = 903:3(y- i(y-  0:008856
= 13L (u® ud);
v = 13 L (V° VO,

where

ul=4X=(X +15Y +32); u®=4X,=(X, +15Y, +3Z,);
V0=9YAX +15Y +3Z); V2 =9Y,=(X,, +15Y, +32Z,);

andYy; X,; andZ,, are based on the reference white point. For the results presented in #igs the D50
reference white point was used giving valuesypf=1; X, = 0:96422% andZ,, = 0:825211 Similarly,
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the XYZ colour components can be calculated using

2 3 2 32 3
X 0:607 Q174 Q200 R

8v£Z = 80209 0587 0114 §GE:
i 0:000 Q006 1116 B

Examples of the the average U and V components produced by the NEgdRnsgee given in Figl8.

CY (b) (c)

Figure 18: Example of CIE based probe functions using subimages 0% siz& (a) Original image, (b)
average U, and (c) average V.

6 Approximate Nearest Neighbours

This section describes the theory of approximate nearest neighbauhisgga and introduces the Fast Li-
brary for Approximate Nearest Neighbours (FLANN) [48]. Furthhrs section describes the selection of
parameters for con guring FLANN. FLANN is employed by the NEAR systarimprove the speed of
tolerance class calculation (seeg.[11]). Approximate nearest neighbour searching can be desribed as

g 2 X, the nearest neighbour search problem is de ned as nding the poiRttinat is closest ta [49].
This problem arises in many research areas, especially in computer asidhor high dimensional data,
there is no known algorithm that performs much better than a linear seattoh déta points if? [49]. As a
result, -approximaté nearest neighbour searching has been introduced where query imbs ceduced
by orders of magnitude while sill achieving near-optimal accuracy. Aapproximate nearest neighbour to
a query poinig 2 X isdened asp 2 X if dist(p;q (1 + )dist(p ;q) wherep is the true nearest
neighbour [49].

FLANN uses two data structures to ef ciently perform approximate nea&ighbour searches, namely
the randomized kd-tree algorithm and the hierarchical k-means tree alggdif. A kd-tree organizes the
data using a binary tree where the tree nodes are pointsRror8ince points belong to ddimensional
vector space, each node must have an associated splitting dimdrsiard{mension used to divide subse-
guent nodes in the tree). The next data point added to the tree is askiggindr the left or right child node
depending on whether its value in the splitting dimension is less than or greatehéhealue of the current
node. The kd-tree algorithm used in FLANN is called randomized becaasptitting dimension for each
node is selected randomly from the Bt dimensions that have the greatest variance [49]. The other data
structure used is the hierarchical k-means tree. This structure is ctsatedursionj.e. the set of data is
partitioned intoK regions using the k-means clustering algorithm and then each region ispaggiioned
into K regionsetc. The recursion is terminated when there are less khatata points in a region [49].

FLANN is the ideal library for performing approximate nearest neighls@arching because of the op-
tion for automatic optimization. The choice of algorithm used for approximateeseaeighbour searching

2Note: the symbol is being used instead of(as is traditional in the literature) to avoid confusion with the tolerance relation.
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is highly dependent on the dataset [49]. Consequently, the FLANN yilbvas an option to select automati-
cally the search algorithm and to optimize the input parameters of the selecteithaiy Both options are
based on the points IA. Optimization is guided by a set of parameters speci ed by the user in the faljow

equation

cost= St Wb + Wmm;

(s+ Webopt
wheres is the search time for the number of vectors in the sample dataisdhe build timem = m{=mgy
is the ratio of memory used for the tree and memory used to store thewgatathe importance of build
time over search time, angl, is the importance of memory overhead [49]. Settmg= 0 means that the
fastest search time is desired, and similarly, settipg= 0 means that faster search time is more important
then memory requirements. Additionally, optimization is also performed basedeotlefired precision
(percentage of query points for which the correct nearest neighibdound) of the results from a nearest
neighbour search (see [49] for more details). To generate the resstsped here, a target precision of 0.8
was used together witl, = wy, = 0.
The following describes the FLANN parameters (see [48] for more details)

Auto. Parm. Select: Determines whether the NEAR system uses the FLANNMyliteature of

automatic parameter selection. Selecting yes adds signi cant time to calculatioesgr Also note,
for comparing a query image to a directory, the automatic parameter selectiors diefore each
image comparison.

Algorithms: The algorithm to use for building the index. The possible valueslaear', “kdtree',
"kmeans', and ‘composite'. The “linear' option does not create anyjridases brute-force search
in the original dataset points, “kdtree' creates one or more randomizéeds, "kmeans' creates a
hierarchical kmeans clustering tree and "composite’ is a mix of both kdtekrasans trees.

Checks: Denotes the number of times the tree(s) in the index should beivebutraversed. A higher
value for this parameter would give better search precision, but alsorafestime.

cb index: This parameter (cluster boundary index) in uences the wploeation is performed in the
hierarchical kmeans tree. When cb index is 0, the next kmeans domain xploecel is choosen to
be the one with the closest centre. A value greater than zero takes intcmatioe size of the domain.

Trees: The number of randomized kd-trees to create. This parametguisertonly when the algo-
rithm used is “kdtree'.

Branching: The branching factor to use for the hierarchical kmeapscteation. While kdtree is
always a binary tree, each node in the kmeans tree may have sevedidsaepending on the value
of this parameter. This parameter is required only when the algorithm udedésns'.

Iterations: The maximum number of iterations to use in the kmeans clusteringveti@gebuilding
the kmeans tree. A value of -1 used here means that the kmeans clusterifd)lsh performed until
convergence. This parameter is required only when the algorithm udedéans'.

Centers Init.: The algorithm to use for selecting the initial centers whennogirfg a kmeans clus-
tering step. The possible values are ‘random' (picks the initial clusterrsematedomly), "gonzales'
(picks the initial centers using the Gonzales algorithm), and “kmeanspgs(ttie initial centers using
the algorithm suggested in [50]).

Target Precision: A number between 0 and 1 specifying the percentdge approximate nearest-
neighbor searches that return the exact nearest-neighbor. Usilgea alue for this parameter gives
more accurate results, but the search takes longer.
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Build Weight: Speci es the importance of the index build time compared to the sieaegghbor
search time. In some applications it's acceptable for the index build step to takeg éime if the
subsequent searches in the index can be performed very fast. mapiplecations it's required that
the index be built as fast as possible even if that leads to slightly lowerstares

Memory Weight: Used to specify the trade off between time (index build time aadis¢ime) and
memory used by the index. A value less than 1 gives more importance to the tinteaspea value
grerater than 1 gives more importance to the memory usage.

Num. of Threads: This parameter is speci ¢ to the NEAR system. The psaneslved in nding
tolerance classes is to determine all the tolerance classes containing & sjigect, then proceed to
the next object in the queue, making these calculations easy to performralfepgseee.g.[11]). As

a result, the NEAR system is multithreaded in order to reduce computation timeprotpeam was
written on a quad-core machine, and thus the default number of threads is 4

7 Equivalence class frame

This frame calculates equivalence classes using the Indiscernibility retdtioafn. 1, i.e., given an image
X, it will calculateX - , where the objects are subimagesXof A sample calculation using this frame is
given in Fig.19 and was obtained by the following steps:

Figure 19: Sample run of the equivalence class frame using a windowfs2ze 2andB = f average Gre@-

1. Click Load Imagebutton and select an image.
2. Click theSet Parameterbutton.

3. Select window size. The value is taken as the square root of thearaasfiluare subimageg., a
value of 5 creates a subimage of 25 pixels.

4. Select number of features (maximum allowed is 24).
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5. Select features (see Sectfor a list of probe functions).

6. Click Run

The result is given in Figl9. The bottom left window contains an image of the equivalence classegwher
each colour represents a single class. The bottom right window is usedplayda single equivalence
classes by clicking in any of the three images. The coordinates of the malksgatermine the equivalence
class that is displayed. The results may be saved by clicking on the save. button

8 Tolerance class frame
This frame calculates tolerance classes using the Perceptual TolerlateriRof Defn 4, where the objects

are subimages ok . A sample calculation using this frame is given in F&§.and was obtained by the
following steps:

Figure 20: Sample run of the tolerance class frame using a window s 20, 18 features, ani=0:7.

1. Click Load Imagebutton and select an image.

2. Click theSet Parameterbutton.

w

Select window size. The value is taken as the square root of thearaafjuare subimage,g., a
value of 5 creates a subimage of 25 pixels.

Select', a value in the intervdD; P 1] wherel is the number of features (length of object description).
Select number of features (maximum allowed is 24).

Select features (see Sectwfor a list of probe functions).

R A

Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectiol for details).
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8. ClickRun

The result is given in Fig20 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation does not partiiimage, the tolerance classes
are displayed upon request. For instance, by clicking on either of the twgesna window appears letting
the user display each tolerance classes containing the subimage seldabedioyse. Further, the subimage
containing the mouse click contains an “X', and the subimages can be ablebi or black.

9 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphaatpseribed in [2, 6], where the
evaluation is labelled the Near Set Index (NSI). For instance, givehd peobe function®, and an image
A, this frame can perform the perceptual erosion or dilation uBirg O- _ as the SE. Also, the NSl is
calculated if perceptual erosion was selected. A sample calculation usiritathis is given in Fig21 and
was obtained by the following steps:

Figure 21. Sample run of the segmentation evaluation frame using a windowfsize @, andB =
f Edge Presefd.

1. Click Load Image & Segmetuutton.
2. Select animage clickpen

3. Select segmentation image and cli@gen Image should contain only one segment and the segment
must be whitg255; 255, 255) and the background must be blaék 0; 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure thésdagh).

4. Click eitherErodeto perform perceptual erosion and segmentation evaluatioDjlate to perform
perceptual dilation (no evaluation takes place during dilation).

5. Select window size. The value is taken as the square root of thearasfluare subimageg., a
value of 5 creates a subimage of 25 pixels.
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6. Select number of features (maximum allowed is four).
7. Select features (see Sectfor a list of probe functions).

8. ClickRun

The result is given in Fig2l. The bottom left window contains an image of the equivalence classes
where each colour represents a different class. The bottom rightowidntains either the erosion or
dilation of the segment. Clicking on any of the three images will display the elguiva class containing
the mouse click in the bottom right image. The NSI is also displayed on the laftdide (if applicable).

10 Near image frame

This frame is used to evaluate the similarity of images using the similarity measueesigi8ectior8. The
user has the option of comparing a pair of images (and viewing the resultingriogeclasses), or comparing
a query image to an entire directory of images. The following two subsectidinethe steps involved
under both options.

10.1 Evaluating a pair of images

The steps involved in comparing a pair of images is a follows, and sample dokphis process is given in
Fig. 22.

Figure 22: Sample run comparing a pair of images using a window si2@ of0, 18 features, anti= 0:7.

1. Select théNew near image windowon, select File New near image window, or press Alt+N.

2. SelectA pair of imagegthe default value) from th8elect type of Comparisavindow, and click OK.
3. Click Load Imagesutton and select two images.
4

. Click theSet Parameterbutton.
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5. Select window size. The value is taken as the square root of thearaasfluare subimageg., a
value of 5 creates a subimage of 25 pixels.

. Select', a value in the intervdD; P 1] wherel is the number of features (length of object description).
. Select number of features (maximum allowed is 24).

. Select features (see Sectfor a list of probe functions).

© 00 N O

. Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectiol for details).

10. ClickRun

The result is given in Fige2 where the left side contains the rst image, and the right side contains the
second image. Clicking in any of the two images will bring up a window that allosiier to view each
tolerance class containing the subimage selected by the mouse. Furthehithage containing the mouse
click contains an X', and the subimages can be coloured white or black, tis similarity of the images
is evaluated using the measures described in Se8tiwhere the results are displayed on the left hand side.

10.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a directory containing inmgeg$ollows, and sample
output for this process is given in Fig3.

Figure 23: Sample run comparing an image to a directory of images using awvside of20 20, 18
features, and = 0:2.

1. Select theNew near image windoweon, select File New near image window, or press Alt+N.

2. SelecQuery image with a directory of imagé®m theSelect type of Comparisanindow, and click
OK.
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3. Click Load Query Image + Dir.button and select an image plus a directory containing images for
comparison with query image.

4. Click theSet Parameterbutton.

(631

. Select window size. The value is taken as the square root of thearaa€uare subimage.g., a
value of 5 creates a subimage of 25 pixels.

. Select', a value in the intervdD; P 1] wherel is the number of features (length of object description).
. Select number of features (maximum allowed is 24).

. Select features (see Sect®for a list of probe functions).

© 00 N O

. Click onFLANN Parametersab, and select the FLANN parameters for calculating tolerance classes
(see Sectiol for details).

10. ClickRun

The result is given in Fig22 where the left side contains the query image, and the right side contains
an image from the directory. Clicking in any of the two images will bring up a wiwndlat allows the
user to view the images from the directory in the order they were rankedetsetbcted similarity measure
(see Sectior8 for a description of the measures). In addition, three output les araedecontaining the
similarity measure of each image in the database, sorted from most similar toife#at S-inally, three
gures are also displayed plotting the similarity measures vs. images in the diréotall three measures.
Note, the results are sorted from best to worst, so the output les areetsired to related the abscissae
to actual image les.

11 Feature display frame

This frame is used to display the output of processing an image with a speobegunction. A sample
calculation using this frame is given in Fig4 and was obtained by the following steps:

Figure 24: Sample run of the feature display frame.
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Click Load Imagebutton and select an image.
Select features (see Sect®for a list of probe functions).

Select probe function

A w0 NP

Click Display feature
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