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Abstract

This report presents the Near set Evaluation And Recognition (NEAR) system. The goal of the
NEAR system is to extract perceptual information from images using near set theory, which provides
a framework for measuring the perceptual nearness of objects. The contributions of this report are an
introduction to the NEAR system as an application of near settheory to image processing, a feature-
based approach to solving the image correspondence problem, and a first step toward automating the
extraction of perceptual information from images where there is interest in measuring the degree of
resemblance between images.

1 Introduction

The goal of the NEAR system is to demonstrate applications of the near set theory presented in [1–10]
(see also, [11]). The system implements a Multiple Document Interface (MDI) (see,e.g., Fig.1) where
each separate processing task is performed in its own child frame. The objects (in the near set sense) in this
system are subimages of the images being processed and the probe functions (features) are image processing
functions defined on the subimages. The system was written in C++ and was designed to facilitate the
addition of new processing tasks and probe functions1. Currently, the system performs six major tasks,
namely, displaying equivalence and tolerance classes for an image, performing segmentation evaluation,
measuring the nearness of two images, performing Content Based Image Retrieval (CBIR), and displaying
the output of processing an image using a specific probe function. This report is organized as follows:
Section2 gives some background on near set theory, Section3 presents the nearness measures implmented
in the NEAR system, Section4 demonstrates the application of near set theory to images, Section5 presents

This research work has been funded by Manitoba Hydro grants T137,T247, T260, T270, T277, and by the Natural Sciences &
Engineering Research Council of Canada (NSERC) grant 185986, NSERC Postgraduate Doctoral Fellowship PGS-D3, University
of Manitoba Faculty of Engineering grant, and Canadian Arthritis Network grant SRI-BIO-05.

1Parts of the Graphical User Interface (GUI) were inspired by the GUI reported in [12] and the wxWidgets example in [13].
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the probe functions implemented in the NEAR system, and Section6 gives an explanation of the settings
used to perform approximate nearest neighbour searching. Finally, Sections7-10 describe the operation of
the GUI.

Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on sets of perceptual objects with matching descriptions (see,e.g.[7, 11]). Specif-
ically, let O represent a set of perceptual objects,i.e. O consists of objects that have their origin in the
physical world. Each perceptual object can be described by a probefunctions, a real-valued function repre-
senting a feature of a perceptual object. The description of an objectx ∈ O is given by

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

wherel is the length of the description and eachφi(x) is a probe function that describes the objectx. The
notion of a probe function in near sets is inspired by Monique Pavel [14],where a probe function that is
invariant relative to a transformation of the images results in matching function (feature) values. In a near
set approach, a real-valued funcionφ : O → <, O a set of images, is aprobe functionif, and only if φ
represents an image feature with values that are in the description of a perceptual object, in particular, in the
description of an image [15–17]. Furthermore, a setF can be defined that represents all the probe functions
used to describe an objectx. Next, a perceptual system〈O,F〉 consists of a non-empty setO of sample
perceptual objects and a non-empty setF of real-valued functionsφ ∈ F such thatφ : O → R.

Definition 1 Perceptual Indiscernibility Relation [7, 18]. Let 〈O,F〉 be a perceptual system. For every
B ⊆ F theperceptual indiscernibility relation∼B is defined as follows:

∼B= {(x, y) ∈ O ×O : ‖ φ(x) − φ(y) ‖
2
= 0},

where‖·‖
2

represents theL2 norm.
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The perceptual indiscernibility relation is a variation of the one given by Z. Pawlak in 1981 [18]. Fur-
thermore, notice that equivalence is defined with respect to the descriptionof an object,i.e. objects are
considered equivalent when the features used to describe them are thesame.

Using the indiscernibility relation (together with the probe functions inB), a set of objects can be
partitioned into classes of objects with matching descriptions such that each class has the highest possible
object resolution under the indiscernibility relation. These classes are called elementary sets or equivalence
classes and are defined as

x/∼B
= {x′ ∈ O | x′ ∼B x}.

Observe that a single object is sufficient to label the class since all objectsin a class have the same descrip-
tion. Moreover, the set of all equivalence classes induced by the partition of a set using the indiscernibility
relation is called a quotient set and is given as

O/∼B
= {x/∼B

| x ∈ O}.

Definition 1 provides the framework for comparisons of sets of objects by introducinga concept of
nearness within a perceptual system. Sets can be considered near eachother when they have “things” in
common. In the context of near sets, the “things” can be quantified by objects or equivalence classes. The
simplest example of nearness between sets sharing “things” in common is the case when two sets have
indiscernible elements. This idea leads to the definition of a weak nearness relation.

Definition 2 Weak Nearness Relation[7]. Let 〈O,F〉 be a perceptual system and letX,Y ⊆ O. A setX
is weakly near to a setY within the perceptual system〈O,F〉 (X./FY ) iff there arex ∈ X andy ∈ Y and
there isB ⊆ F such thatx ∼B y. In the case where setsX,Y are defined within the context of a perceptual
system, thenX,Y are weakly near each other.

An example of disjoint sets that are weakly near each other is given in Fig.2(a)where each colour represents
an equivalence class. These sets are weakly near each other since both sets share objects belonging to
the same equivalence class. As a practical example of weakly near sets, consider a database of images
where each image is described by some feature vector,i.e. the images are considered perceptual objects
and the feature vectors are the object descriptions. Examples of features are the values of different colour
models [19] or moments [20]. In this case, two disjoint sets of images are weakly near each other if each set
contains one or more images with descriptions that match an image in the other set.

Next, the notion of nearness in Definition2 can be strengthened by considering equivalence classes
rather than objects which is the case in the following definition.

Definition 3 Nearness Relation[7]. Let 〈O,F〉 be a perceptual system and letX,Y ⊆ O. A setX is near
to a setY within the perceptual system〈O,F〉(X ./F Y ) iff there areF1,F2,⊆ F andf ∈ F and there are
A ∈ O/∼F1

, B ∈ O/∼F2

, C ∈ O/∼f
such thatA ⊆ X,B ⊆ Y , andA,B ⊆ C. If a perceptual system is

understood, than a setX is near to a setY .

2.1 Tolerance near sets

A perception-based approach to discovering resemblances between images leads to a tolerance class form
of near sets that models human perception in a physical continuum viewed in the context of image tolerance
spaces. A tolerance space-based approach to perceiving image resemblances hearkens back to the obser-
vation about perception made by Ewa Orłowska in 1982 [21] (see, also, [22]), i.e., classes defined in an
approximation space serve as a formal counterpart of perception.

The termtolerance spacewas coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [23]. A tolerance space is a setX supplied with a binary relation' (i.e., a subset' ⊂ X ×X)

CI Laboratory TR-2010-017 3



(a) (b)

(c) (d)

Figure 2: Examples of Definitions2 & 3: (a) Example of Definition2, (b) example ofO/∼F1

, (c) example
of O/∼F2

, and (d) example ofO/∼f
showing (together with (b) and (c)) that setsX andY are near to each

other according to Definition3.

that is reflexive (for allx ∈ X, x ' x) and symmetric (i.e., for all x, y ∈ X, x ' y impliesy ' x) but
transitivity of' is not required. When dealing with perceptual objects (especially, components in images), it
is sometimes necessary to relax the equivalence condition of Defn.1 to facilitate observation of associations
in a perceptual system. This variation is called a tolerance relation that defines yet another form of near
sets [3,4,8,9] and is given in Defn.4.

Definition 4 Perceptual Tolerance Relation[8,9] (see [10,24] for applications). Let〈O,F〉 be a perceptual
system and letε ∈ R. For everyB ⊆ F theperceptual tolerance relation∼=B,ε is defined as follows:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x) − φ(y) ‖
2
≤ ε}.

For notational convenience, this relation is written∼=B instead of∼=B,ε with the understanding thatε is
inherent to the definition of the tolerance relation.

O/∼B

X

Y

O/∼F1

X

YA

O/∼F2

X

Y
B

O/∼f

X

Y
C

Under the tolerance relation there is a need to define a method by which objectsare grouped together
when transitivity no longer applies. In an equivalence class, an object isadded to a class if its description
matches the description of the objects already in the class, which by definition are all the same. However,
the lack of transitivity gives rise to the two very different classes, namely aneighbourhood and a pre-class.
A neighbourhoodis defined as

N(x) = {y ∈ O : x ∼=B,ε y}.
In contrast, all the pairs of objects within a pre-class must satisfy the tolerance relation. ForB ⊆ F and
ε ∈ R, a setX ⊆ O is apre-classiff x ∼=B,ε y for any pairx, y ∈ X, and a maximal pre-class with respect
to inclusion is called a tolerance class.

Notice, objects can belong to more than one tolerance class. Consequently, the following notation is
required to differentiate between classes and facilitate discussions in subsequent sections. The set of all
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Table 1: Tolerance Class Example

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079

x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489

x4 .7972 x9 .4722 x14 .4990 x19 .9170

x5 .6281 x10 .4523 x15 .6289 x20 .7143

tolerance classes using only the objects inO is given byH∼=B,ε
(O) (also called the cover ofO), a single

tolerance class is represented byC ∈ H∼=B,ε
(O), and the set of all tolerance classes containing an objectx

is denoted byCx ⊂ H∼=B,ε
(O).

The following simple example highlights the need for a tolerance relation as well as demonstrates the
construction of tolerance classes from real data. Consider the 20 objects in Table1 that where|φ(xi)| = 1.
Lettingε = 0.1 gives the following tolerance classes:

H∼=B,ε
(O) = {{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},

{x2, x7, x18, x19},
{x3, x12, x17},
{x4, x13, x20}, {x4, x18},
{x5, x6, x15, x16}, {x5, x6, x15, x20},
{x6, x13, x20}}

Observe that each object in a tolerance class satisfies the condition‖ φ(x)−φ(y) ‖≤ ε, and that almost all
of the objects appear in more than one class. Moreover, there would be twenty classes if the indiscernibility
relation was used since there are no two objects with matching descriptions.

Definition 5 Tolerance Near Sets[8, 9]. Let 〈O,F〉 be a perceptual system and letε ∈ R,B ⊆ F. Fur-
ther, letX,Y ⊆ O, denote disjoint sets with coverings determined by the tolerance relation∼=B,ε, and let
H∼=B,ε

(X), H∼=B,ε
(Y ) denote the set of tolerance classes forX,Y , respectively. SetsX,Y are tolerance

near setsiff there are tolerance classesA ∈ H∼=B,ε
(X), B ∈ H∼=B,ε

(Y ) such thatA./
F
B.

3 Nearness measure

The nearness measure was first proposed in working with the indiscernibility relation and equivalence
classes [11]. The approach was that the degree of nearness of setsin a perceptual system is determined
by the cardinalities of the equivalence classes that have the same description (an idea that is visualized in
Fig. 3). For example, sets that are considered “more similar” as in Fig.4(a), should contain more pairs of
equivalence classes (from the respective sets) that have matching descriptions. Consequently, the nearness
measure is determined by counting the number of objects in equivalence classes that have matching descrip-
tions. Thus, the sets in Fig.4(a)are closer (more near) to each other in terms of their descriptions than the
sets in Fig.4(b). Moreover, this notion can be generalized to tolerance classes as is the case in the following
definition.

CI Laboratory TR-2010-017 5



Figure 3: Visualization of nearness measure based on equivalence classes and the indiscernibility relation.
Similar images should produce equivalence classes that are evenly divided betweenX andY . This is
measured by counting the number of objects that belong to setsX andY for each equivalence class, and
comparing the results.

(a) (b)

Figure 4: Example of degree of nearness between two sets: (a) High degree of nearness, and (b) low degree
of nearness.

Definition 6 Nearness Measure[5, 10, 11]. Let 〈O,F〉 be a perceptual system, withε ∈ R, andB ⊆ F.
Furthermore, letX andY be two disjoint sets and letZ = X ∪ Y . Then anearness measurebetween two
sets is given by

tNM∼=B,ε
(X,Y ) =

(
∑

C∈H∼=B,ε
(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X|, |[C ∩ Y |)
max(|C ∩X|, |C ∩ Y |) .

3.1 Other measures

This section introduces two additional measures for determining the degree that near sets resemble each
other. These measures were created out of a need for making comparisons of the results generated by the
nearness measure. Here, one of two approaches could have been investigated. Namely, the nearness measure
could be compared with a content-based image retrieval system or measure that is currently regarded as
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the best approach for a database with given characteristics. Or, the nearness measure could be compared
with measures that determine nearness in a manner comparable totNM . In the NEAR system, the latter
approach was taken. As a result, approaches were created, based on existing theories, that measure the
distance between sets.

3.1.1 Hausdorff Distance

The Hausdorff distance is used to measure the distance between sets in a metric space [25] (see [26] for
English translation), and is defined as

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) },

wheresup and inf refer to the supremum and infimum, andd(x, y) is the distance metric (in this case it
is thel2 norm). The distance is calculated by considering the distance from a single element in a setX to
every element of setY , and the shortest distance is selected as the infimum (see,e.g., Fig. 5). This process
is repeated for everyx ∈ X and the largest distance (supremum) is selected as the Hausdorff distanceof the
setX to the setY . This process is then repeated for the setY because the two distances will not necessarily
be the same. Keeping this in mind, the measuretHD [5] is defined as

tHD∼=B,ε
(X,Y ) =

(
∑

C∈H∼=B,ε
(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|(
√
l − dH(C ∩X,C ∩ Y )).

Observe, that low values of the Hausdorff distance correspond to a higher degree of resemblance than larger
distances. Consequently, the distance is subtracted from the largest distance

√
l. Also, notice that the

performance of the Hausdorff distance is poor for low values ofε, since, as tolerance classes start to become
equivalence classes (i.e. asε → 0), the Hausdorff distance approaches 0 as well. Thus, if each tolerance
class is close to an equivalence class, the resulting distance will be zero, and consequently the measure will
produce a value near to 1, even if the images are not alike. In contrast, asε increases, the members of classes
tend to become separated in feature space, and, as a result, only classeswith objects that have objects inX
that are close to objects inY will produce a distance close to zero. What does this imply? If for a larger
value ofε, relatively speaking, the set of objectsZ = X ∪ Y still produces tolerance classes with objects
that are tightly clustered, then this measure will produce a high measure value. Notice, that this distinction
is only made possible ifε is relaxed. Otherwise, all tolerance classes will be tightly clustered.

x

x

x

x
x

x

x

x

x

x
y

y

y

y

y

y

y

y

X Y

Figure 5: Example demonstrating a single step in determining the Hausdorff distance between two sets.

The Hausdorff distance is a natural choice for comparison with thetNM nearness measure because it
measures the distance between sets in a metric space. Recall, that tolerance classes are sets of objects with
descriptions inl-dimensional feature space. The nearness measure evaluates the split of a tolerance class
between setsX andY , where the idea is that a tolerance class should be evenly divided betweenX andY ,
if the two sets are similar (or the same). In contrast, the Hausdorff distance measures the distance between
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two sets. Here the distance being measured is between the portions of a tolerance class in setsX andY .
Thus, two different measures can be used on the same data, namely the tolerance classes obtained from the
union ofX andY .

3.1.2 Hamming Measure

The Hamming measure introduced in this section was inspired by the Hamming measure in [27], and since
the Hamming measure is not defined in terms of sets, it was modified to give the following

tHM∼=B
(X,Y ) =

1

|H∼=B
(Z)| ·

∑

C∈H∼=B
(Z)

1(|avgn(C ∩X) − avgn(C ∩ Y )| ≤ th),

where1(·) is the indicator function and avgn(C ∩X) is the average feature vector used to describe objects
in C ∩X. For example, the average feature vector can be calculated by adding allthe values for a specific
feature in the feature vector inC ∩ X, and then dividing by the number of objects. The idea behind this
measure is that, for similar sets, the average feature vector of the portion ofa tolerance class (obtained from
Z = X ∪ Y ) that lies inX should have values similar to the average feature vector of the portion of the
tolerance class that lies inY . Observe, that ifth = ε, this function will simply count the number of classes
that are not singletons,i.e. class that contain more than one element, since all objects have descriptions
whose distances are less thanε. If th = ε, than this measure will perform best for low levels ofε, since only
sets that resemble each other will contain classes with cardinality greater thanone. Otherwise, this measure
will perform in a similar manner totHD, namely, this measure will produce high values for classes which
have objects inX that are close to objects inY with respect toth.

4 Perceptual image processing

Near set theory can easily be applied to images by partitioning an image into subimages and considering
each subimage as an object in the near set sense,i.e. each subimage is a perceptual object, and each object
description consists of the values obtained from techniques of image processing on the subimage (see,e.g.
Fig. 6). Moreover, this technique of partitioning an image, and assigning featurevectors to each subimage
is an approach that has also been traditionally used in content-based image retrieval.

Formally, define a RGB image asf = {p1,p2, . . . ,pT }, wherepi = (c, r, R,G,B)T, c ∈ [1,M ], r ∈
[1, N ],R,G,B ∈ [0, 255], andM,N respectively denote the width and height of the image andM×N = T .
Further, define a square subimage asfi ⊂ f such thatf1∩f2 . . .∩fs = ∅, andf1∪f2 . . .∪fs = f, wheres
is the number of subimages inf . Next,O can be defined as the set of all subimages,i.e.,O = {f1, . . . , fs},
andF is a set of image processing descriptors or functions that operate on images. Then, the nearness of
two images can be discovered by partitioning each of the images into subimages and letting these represent
objects in a perceptual system,i.e, let the setsX andY represent the two images to be compared where
each set consists of the subimages obtained by partitioning the images. Then,the set of all objects in this
perceptual system is given byZ = X ∪ Y .

5 Probe functions

This section describes the probe functions used in the NEAR system, and gives example NEAR system
output images processed using these probe functions.

CI Laboratory TR-2010-017 8



Figure 6: Example demonstrating the application of near set theory to images, namely the image is parti-
tioned into subimages where each subimage is considered a perceptual object, and object descriptions are
the results of image processing techniques on the subimage.

5.1 Average greyscale value

Conversion from RGB image to greyscale is accomplished using Magick++, the object-orientated C++ API
to the ImageMagick image-processing library [28]. First, an RGB image is converted to greyscale using

Gr = 0.299R+ 0.587G+ 0.114B, (1)

and then the values are averaged over each subimage. An example is given in Fig.7.

(a) (b) (c)

Figure 7: Example of average greyscale probe function: (a) Original image [29], (b) average greyscale over
subimages of size5 × 5, and (c) average greyscale over subimages of size10 × 10.

5.2 Normalized RGB

The normalized RGB values is a feature described in [30], and the formula isgiven by

NX =
X

RT +GT +BT
,

where the valuesRT , GT , andBT are respectively the sum ofR,G,B components of the pixels in each
subimage, andX ∈ [RT , GT , BT ]. See Fig.8 for an example using this probe function. Note, these images
were produces by finding the normalized value and multiplying it by 255.

CI Laboratory TR-2010-017 9



(a) (b) (c)

Figure 8: Example of normalized RGB probe function: (a) Original image [31], (b) normalized R over
subimages of size5 × 5, and (c) normalized R over subimages of size10 × 10.

5.3 Shannon’s entropy

Shannon introduced entropy (also called information content) as a measureof the amount of information
gained by receiving a message from a finite codebook of messages [32]. The idea was that the gain of infor-
mation from a single message is proportional to the probability of receiving themessage. Thus, receiving a
message that is highly unlikely gives more information about the system than a message with a high prob-
ability of transmission. Formally, let the probability of receiving a messagei of n messages bepi, then the
information gain of a message can be written as

∆I = log(1/pi) = − log(pi), (2)

and the entropy of the system is the expected value of the gain and is calculated as

H = −
n∑

i=1

pi log(pi).

This concept can easily be applied to the pixels of a subimage. First, the subimage is converted to
greyscale using Eq.1. Then, the probability of the occurrence of grey leveli can be defined aspi = hi/Ts,
wherehi is the number of pixels that take a specific grey level in the subimage, andTs is the total number
of pixels in the subimage. Information content provides a measure of the variability of the pixel intensity
levels within the image and takes on values in the interval[0, log2 L] whereL is the number of grey levels
in the image. A value of 0 is produced when an image contains all the same intensitylevels and the highest
value occurs when each intensity level occurs with equal frequency [33]. An example of this probe function
is given in Fig.9. Note, these images were formed by multiplying the value of Shannon’s entorpy by 32
sinceL = 256 (thus giving a maximum value of 8).

(a) (b) (c)

Figure 9: Example of Shannon’s entropy applied to images: (a) Original image[31], (b) Shannon’s entropy
applied to subimages of size5 × 5, and (c) Shannon’s entropy applied to subimages of size10 × 10.

CI Laboratory TR-2010-017 10



5.4 Pal’s entropy

Work in [32, 34] shows that Shannon’s definition of entropy has some limitations. Shannon’s definition of
entropy suffers from the following problems: it is undefined whenpi = 0; in practise the information gain
tends to lie at the limits of the interval[0, 1]; and statistically speaking, a better measure of ignorance is 1 -
pi rather than1/p1 [32]. As a result, a new definition of entropy can be defined with the following desirable
properties:

P1: ∆I(pi) is defined at all points in[0, 1].

P2: limpi→0 ∆I(pi) = ∆I(pi = 0) = k1, k1 > 0 and finite.

P3: limpi→1 ∆I(pi) = ∆I(pi = 1) = k2, k2 > 0 and finite.

P4: k2 < k1.

P5: With increase inpi, ∆I(pi) decreases exponentially.

P6: ∆I(p) andH, the entropy, are continuous for0 ≤ p ≤ 1.

P7: H is maximum when allpi’s are equal,i.e.H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

With these in mind, [32] defines the gain in information from an event as

∆I(pi) = e(1−pi),

which gives a new measure of entropy as

H =
n∑

i=1

pie
(1−pi).

Pal’s version of entropy is given in Fig.10. Note, these images were formed by first converting the original
image to greyscale, calculating the entropy for each subimage, and multiplying this value by 94 (since the
maximum ofH is e1−1/256).

(a) (b) (c)

Figure 10: Example of Pal’s entropy applied to images: (a) Original image [31], (b) Pal’s entropy applied to
subimages of size5 × 5, and (c) Pal’s entropy applied to subimages of size10 × 10.

5.5 Edge based probe functions

The edge based probe functions integrated in the NEAR system incorporate an implementation of Mallat’s
Multiscale edge detection method based on Wavelet theory [35]. The idea is that edges in an image occur
at points of sharp variation in pixel intensity. Mallat’s method calculates the gradient of a smoothed image
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using Wavelets, and defines edge pixels as those that have locally maximal gradient magnitudes in the
direction of the gradient.

Formally, define a 2-D smoothing functionθ(x, y) such that its integral overx andy is equal to 1, and
converges to 0 at infinity. Using the smoothing function, one can define the functions

ψ1(x, y) =
∂θ(x, y)

∂x
and ψ2(x, y) =

∂θ(x, y)

∂y
,

which are, in fact, wavelets given the properties ofθ(x, y) mentioned above. Next, the dilation of a function
by a scaling factors is defined as

ξs(x, y) =
1

s2
ξ(
x

s
,
y

s
).

Thus, the dilation bys of ψ1, andψ2 is given by

ψ1
s(x, y) =

1

s2
ψ1(x, y) and ψ2

s(x, y) =
1

s2
ψ2(x, y).

Using these definitions, the wavelet transform off(x, y) ∈ L2(R2) at the scales is given by

W 1
s f(x, y) = f ∗ ψ1

s(x, y) and W 2
s f(x, y) = f ∗ ψ2

s(x, y),

which can also be written as
(
W 1

s f(x, y)
W 2

s f(x, y)

)
= s

(
∂
∂x(f ∗ θs)(x, y)
∂
∂y (f ∗ θs)(x, y)

)
= s~∇(f ∗ θs)(x, y).

Finally, edges can be detected by calculating the modulus and angle of the gradient vector defined respec-
tively as

Msf(x, y) =
√
|W 1

s f(x, y)|2 + |W 2
s f(x, y)|2

and
Asf(x, y) = argument(W 1

s f(x, y) + iW 2
s f(x, y)),

and then finding the modulus maximum defined as pixels with modulus greater than the two neighbours in
the direction indicated byAsf(x, y) (see [35] for specific implementation details). Examples of Mallatt’s
edge detection method obtained using the NEAR system are given in Fig.11.

5.5.1 Edge present

This prob function simply returns true if there is an edge pixel contained in thesubimage (see,e.g., Fig.12).

5.5.2 Number of edge pixels

This probe function returns the total number of pixels in a subimage belongingto an edge (see,e.g., Fig.13).

5.5.3 Edge orientation

This probe function returns the average orientation of subimage pixels belonging to an edge (see,e.g.,
Fig. 14).
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(a) (b)

(c) (d)

Figure 11: Example of NEAR system edge detection using Mallat’s method: (a)Original image, (b) edges
obtained from (a), (c) original image, and (d) obtained from (c).

(a) (b) (c)

Figure 12: Example of edge present probe function: (a) Edges obtained from Fig.7(a), (b) Application to
image with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

5.6 Grey level co-occurrence matrices

Image texture is an important part of perceiving images. Texture is difficultto describe, and is generally
associated with a region of the image, rather than restricted to a specific pixel.Generally, there are statistical
and structural approaches to identifying texture [36]. The textural features used in this thesis are based on
second order measures, as reported in [37–39], where the approach is considered second-order, since the
measures are not derived directly from the pixel values themselves, butrather on statistics generated from
relationships between groups of two pixels given by a grey-level co-occurrence matrix. In other words, the
features are based on the average spatial relationship between pixel values [37].

In general, the grey level co-occurrence matrix is defined with respectto the angle and distance between
pixel pairs. However, to keep things simple, the grey level co-occurrence matrix will first be defined with
respect to horizontally adjacent pixels, which corresponds to an angle of 0◦ and a distanced = 1 in the
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(a) (b) (c)

Figure 13: Example of number of edge pixels probe function: (a) Originalimage, (b) Application to image
with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

(a) (b) (c)

Figure 14: Example of average orientation probe function: (a) Original image, (b) Application to image
with subimages of size5 × 5, and (c) Application to image with subimages of size10 × 10.

traditional literature. Using the notation given in [37], letLx = {1, 2, . . . , Nx} andLy = {1, 2, . . . , Ny}
respectively denote the horizontal and vertical spatial domains of a greylevel image quantized toNg levels,
i.e. the grey levels in an image are in the setG = {0, 1, . . . , Ng − 1}. Then,Ly × Lx is the set of all pixel
coordinates belonging to an imageI, whereI : Ly × Lx → G, and the grey level co-occurrence matrix is
given as

P (i, j) = |{((k, l), (m,n)) ∈ (Ly × Lx) × (Ly × Lx) :

m− k = 0, n− l = 1, I(k, l) = i, I(m,n) = j}|. (3)

For clarity, an example of Eq.3 is given graphically in Fig.15. One can add the degree and distance to Eq.3,
by the following simple modification,

P (i, j, d, 0◦) = |{((k, l), (m,n)) ∈ (Ly × Lx) × (Ly × Lx) :

m− k = 0, n− l = 1, I(k, l) = i, I(m,n) = j}|.

For angles45◦, 90◦, and135◦, see [37]. Finally, the following textural features can be derived fromthe grey
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level co-occurrence matrix,

Maximum Probability max
i,j

(pij),

Contrast
Ng−1∑
i=0

Ng−1∑
j=0

(i− j)2pij ,

Uniformity (also called Energy)
Ng−1∑
i=0

Ng−1∑
j=0

p2
ij ,and

Homogeneity
Ng−1∑
i=0

Ng−1∑
j=0

pij

1+|i−j| ,

wherepij = P (i, j) divided by the sum of the elements inP . In brief, the maximum probability returns
the strongest response ofP , contrast measures the intensity contrast between a pixel and its neighbour,
uniformity is the angular second moment, and homogeneity measures the spatial closeness of the distribution
of elements inP to the diagonal (see [40] for further details). Finally, Fig.16gives examples of each of the
grey level co-occurance matrix probe functions implemented in the NEAR system.

01 23

3 3 1 1

1

2 0 0 0

3 0 3 2 1 2 3 3

2 3 2 0 0 0 0

0 1 2 0 1 2 3 3

0 0 3 2 0 2 2 3

1 1 1 3 3 3 32

23 3 3 1 1 0 0

1 1 10

(a)

6 4 2 2

2 6 4 2

5 1 1 6

2 2 5 6

0

0

1

1 2

2

3

3

(b)

Figure 15: Example demonstrating the creation of a grey level co-occurrence matrix. (a) Quantized image,
and (b) grey level co-occurrence matrix of0◦ andd = 1.

(a) (b) (c) (d) (e)

Figure 16: Example of GLCM probe functions using subimages of size5 × 5: (a) Original image, (b)
maximum probability, (c) contrast, (d) uniformity, and (e) homogeneity.
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5.7 Zernike moments

Zernike moments can be used to provide region-based descriptors of an image that are invariant with respect
to rotation and reflections [20]. Moreover, a small set of Zernike moments can characterize the global shape
of a pattern effectively, where the lower order moments represent the global shape, and the higher order
moments represent the detail [41–43].

As given in [20], for a continuous image functionf(x, y), the Zernike moment of ordernwith repetition
m is defined as

Anm =

∫ ∫

D
f(x, y)V ∗

nm(x, y)dxdy, (4)

where the double integral is defined over the unit diskD = {(x, y) : x2 + y2 ≤ 1}, n is a non-negative
integer, andm is an integer that makes result ofn − |m| even and non-negative. In Eq.4, Vnm(x, y) is a
Zernike function defined as

Vnm(x, y) = Rnm(ρ)ejmθ,

whereρ =
√
x2 + y2, θ = tan−1(y/x), and the radial Zernike polynomialRnm(ρ) is defined by

Rnm(ρ) =

(n−|m|)/2∑

s=0

(−1)s(n− s)!pn−2s

s!
(n+|m|

2 − s
)
!
(n−|m|

2 − s
)
!
.

As explained in [20], Eq.4 cannot be applied directly to digital images. Consequently, a mapping of the
digital image must occur. LetF (i, j), i = 1, . . . , N, j = 1, . . . , N denote anN × N image, thenF (i, j)
can be mapped onto a functionf(xi, yi) defined on[−1, 1]2 according to

f(xi, yi) = F (i, j), i = 1, . . . , N, j = 1, . . . , N,

wherexi = (2i−N −1)/N andyj = (2j−N −1)/N . Note, it can be assumed, without loss of generality,
that f(xi, yi) is a function with all its pixels inside the unit circle [20]. Moreover, since the image is not
analog, but actually a discrete function, the following approximation can be used to calculate the Zernike
moments from sampled data

Ãnm =
∑

i

∑

j

wnm(xi, yj)f(xi, yj), (5)

wherei andj are taken such that(xi, yj) ∈ D,

wnm(xi, yj) =

∫ xi+
∆

2

xi−
∆

2

∫ yj+
∆

2

yj−
∆

2

V ∗
nm(x, y)dxdy,

and∆ = 2/N is the pixel width/height. Finally,wnm(xi, yj) can be computed using

wnm(xi, yj) ≈ ∆2V ∗
nm(xi, yj). (6)

Note, it was shown in [20] that using Eq.5 & 6 is a highly inaccurate approach to computing Zernike
moments due to both the geometric error caused by the difference between thetotal area covered by the
pixels in Eq.5 and the actual area of the unit circle, as well as the error due to the approximation of
wnm(xi, yj) in Eq. 6. Instead, a method for calculating Zernike moments in polar coordinates (rather than
the Cartesian method given above) is given that eliminates the previously mentioned errors. Nevertheless,
Eq.5 & 6 were still used to generate rotationally invariant features due to the followingreasons. First, only
low order moments were used (e.g.n ≤ 4), and evidence in [20] demonstrated that the results of using only
low orders of Zernike moments produced magnitudes with acceptable level oferrors, both in comparisons of
the magnitudes on a constant image and for use in reconstructing images. Also, others have reported success
using low order Zernike moments for content-based image retrieval (see,e.g.[44,45]), and implementation
of Eq.5 & 6 is simple and fast. See Fig.17 for examples of the probe functions based on Zernike moments
implemented in the NEAR system.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 17: Example of Zernike probe functions using subimages of size5 × 5: (a) Original image, (b) - (i)
in {(1, 1), (2, 0), (2, 2), (3, 1), (3, 3), (4, 0), (4, 2), (4, 4)}.

5.7.1 CIELUV Colour Space

The CIE 1976L∗u∗v∗ Colour Space (also written CIELUV) is a uniform colour space where the Euclidean
distances between points in the space is proportional to human perception ofdifferences in colour [46]. In
contrast, the RGB colour space represents a non-uniform space with respect to the human visual system.
TheL∗u ∗ v∗ colour components are given (in terms of the XYZ colour components) by thefollowing
equations [47]:

L∗ = 116
( Y
Yn

)1/3 − 16, (
Y

Yn

)
> 0.008856,

L∗ = 903.3(
Y

Yn

)
, (
Y

Yn

) ≤ 0.008856,

u∗ = 13L∗(u′ − u′n),

v∗ = 13 ∗ L∗(v′ − v′n),

where

u′ = 4X/(X + 15Y + 3Z), u′n = 4Xn/(Xn + 15Yn + 3Zn),

v′ = 9Y/(X + 15Y + 3Z), v′n = 9Yn/(Xn + 15Yn + 3Zn),

andYn, Xn, andZn are based on the reference white point. For the results presented in this thesis, the D50
reference white point was used giving values ofYn = 1, Xn = 0.964221, andZn = 0.825211. Similarly,
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the XYZ colour components can be calculated using


X
Y
Z


 =



0.607 0.174 0.200
0.299 0.587 0.114
0.000 0.006 1.116






R
G
B


 .

Examples of the the average U and V components produced by the NEAR system are given in Fig.18.

(a) (b) (c)

Figure 18: Example of CIE based probe functions using subimages of size5 × 5: (a) Original image, (b)
average U, and (c) average V.

6 Approximate Nearest Neighbours

This section describes the theory of approximate nearest neighbour searching, and introduces the Fast Li-
brary for Approximate Nearest Neighbours (FLANN) [48]. Further,this section describes the selection of
parameters for configuring FLANN. FLANN is employed by the NEAR systemto improve the speed of
tolerance class calculation (see,e.g. [11]). Approximate nearest neighbour searching can be desribed as
follows. Given a set of pointsP = {p1, . . . , pn} in an d-dimensional vector spaceX and a query point
q ∈ X, the nearest neighbour search problem is defined as finding the point inP that is closest toq [49].
This problem arises in many research areas, especially in computer vision,and for high dimensional data,
there is no known algorithm that performs much better than a linear search ofthe data points inP [49]. As a
result,α-approximate2 nearest neighbour searching has been introduced where query times can be reduced
by orders of magnitude while sill achieving near-optimal accuracy. Anα-approximate nearest neighbour to
a query pointq ∈ X is defined asp ∈ X if dist(p, q) ≤ (1 + α)dist(p∗, q) wherep∗ is the true nearest
neighbour [49].

FLANN uses two data structures to efficiently perform approximate nearest neighbour searches, namely
the randomized kd-tree algorithm and the hierarchical k-means tree algorithm [49]. A kd-tree organizes the
data using a binary tree where the tree nodes are points fromP . Since points belong to ad-dimensional
vector space, each node must have an associated splitting dimension (i.e. a dimension used to divide subse-
quent nodes in the tree). The next data point added to the tree is assignedto either the left or right child node
depending on whether its value in the splitting dimension is less than or greater than the value of the current
node. The kd-tree algorithm used in FLANN is called randomized because the splitting dimension for each
node is selected randomly from the firstD dimensions that have the greatest variance [49]. The other data
structure used is the hierarchical k-means tree. This structure is createdby recursion,i.e. the set of data is
partitioned intoK regions using the k-means clustering algorithm and then each region is againpartitioned
intoK regionsetc.The recursion is terminated when there are less thanK data points in a region [49].

FLANN is the ideal library for performing approximate nearest neighboursearching because of the op-
tion for automatic optimization. The choice of algorithm used for approximate nearest neighbour searching

2Note: the symbolα is being used instead ofε (as is traditional in the literature) to avoid confusion with the tolerance relation.
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is highly dependent on the dataset [49]. Consequently, the FLANN library has an option to select automati-
cally the search algorithm and to optimize the input parameters of the selected algorithm. Both options are
based on the points inP . Optimization is guided by a set of parameters specified by the user in the following
equation

cost=
s+ wbb

(s+ wbb)opt
+ wmm,

wheres is the search time for the number of vectors in the sample dataset,b is the build time,m = mt/md

is the ratio of memory used for the tree and memory used to store the data,wb is the importance of build
time over search time, andwm is the importance of memory overhead [49]. Settingwb = 0 means that the
fastest search time is desired, and similarly, settingwm = 0 means that faster search time is more important
then memory requirements. Additionally, optimization is also performed based on the desired precision
(percentage of query points for which the correct nearest neighbour is found) of the results from a nearest
neighbour search (see [49] for more details). To generate the results presented here, a target precision of 0.8
was used together withwb = wm = 0.

The following describes the FLANN parameters (see [48] for more details):

• Auto. Parm. Select: Determines whether the NEAR system uses the FLANN library feature of
automatic parameter selection. Selecting yes adds significant time to calculation process. Also note,
for comparing a query image to a directory, the automatic parameter selection occurs before each
image comparison.

• Algorithms: The algorithm to use for building the index. The possible values are ‘linear’, ‘kdtree’,
‘kmeans’, and ‘composite’. The ‘linear’ option does not create any index, it uses brute-force search
in the original dataset points, ‘kdtree’ creates one or more randomized kd-trees, ‘kmeans’ creates a
hierarchical kmeans clustering tree and ‘composite’ is a mix of both kdtree and kmeans trees.

• Checks: Denotes the number of times the tree(s) in the index should be recursively traversed. A higher
value for this parameter would give better search precision, but also takemore time.

• cb index: This parameter (cluster boundary index) influences the way exploration is performed in the
hierarchical kmeans tree. When cb index is 0, the next kmeans domain to be explored is choosen to
be the one with the closest centre. A value greater than zero takes into account the size of the domain.

• Trees: The number of randomized kd-trees to create. This parameter is required only when the algo-
rithm used is ‘kdtree’.

• Branching: The branching factor to use for the hierarchical kmeans tree creation. While kdtree is
always a binary tree, each node in the kmeans tree may have several branches depending on the value
of this parameter. This parameter is required only when the algorithm used is ‘kmeans’.

• Iterations: The maximum number of iterations to use in the kmeans clustering stagewhen building
the kmeans tree. A value of -1 used here means that the kmeans clustering should be performed until
convergence. This parameter is required only when the algorithm used is ‘kmeans’.

• Centers Init.: The algorithm to use for selecting the initial centers when performing a kmeans clus-
tering step. The possible values are ‘random’ (picks the initial cluster centers randomly), ‘gonzales’
(picks the initial centers using the Gonzales algorithm), and ‘kmeanspp’ (picks the initial centers using
the algorithm suggested in [50]).

• Target Precision: A number between 0 and 1 specifying the percentage ofthe approximate nearest-
neighbor searches that return the exact nearest-neighbor. Using a higher value for this parameter gives
more accurate results, but the search takes longer.

CI Laboratory TR-2010-017 19



• Build Weight: Specifies the importance of the index build time compared to the nearest-neighbor
search time. In some applications it’s acceptable for the index build step to take along time if the
subsequent searches in the index can be performed very fast. In other applications it’s required that
the index be built as fast as possible even if that leads to slightly lower search times

• Memory Weight: Used to specify the trade off between time (index build time and search time) and
memory used by the index. A value less than 1 gives more importance to the time spent and a value
grerater than 1 gives more importance to the memory usage.

• Num. of Threads: This parameter is specific to the NEAR system. The process involved in finding
tolerance classes is to determine all the tolerance classes containing a specific object, then proceed to
the next object in the queue, making these calculations easy to perform in parallel (see,e.g.[11]). As
a result, the NEAR system is multithreaded in order to reduce computation time. Theprogram was
written on a quad-core machine, and thus the default number of threads is 4.

7 Equivalence class frame

This frame calculates equivalence classes using the Indiscernibility relationof Defn.1, i.e., given an image
X, it will calculateX/∼B

where the objects are subimages ofX. A sample calculation using this frame is
given in Fig.19and was obtained by the following steps:

Figure 19: Sample run of the equivalence class frame using a window size of 2× 2 andB = {φAverage Grey}.

1. Click Load Imagebutton and select an image.

2. Click theSet Parametersbutton.

3. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

4. Select number of features (maximum allowed is 24).
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5. Select features (see Section5 for a list of probe functions).

6. Click Run.

The result is given in Fig.19. The bottom left window contains an image of the equivalence classes where
each colour represents a single class. The bottom right window is used to display a single equivalence
classes by clicking in any of the three images. The coordinates of the mouse click determine the equivalence
class that is displayed. The results may be saved by clicking on the save button.

8 Tolerance class frame

This frame calculates tolerance classes using the Perceptual Tolerance Relation of Defn.4, where the objects
are subimages ofX. A sample calculation using this frame is given in Fig.20 and was obtained by the
following steps:

Figure 20: Sample run of the tolerance class frame using a window size of20×20, 18 features, andε = 0.7.

1. Click Load Imagebutton and select an image.

2. Click theSet Parametersbutton.

3. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

4. Selectε, a value in the interval[0,
√
l] wherel is the number of features (length of object description).

5. Select number of features (maximum allowed is 24).

6. Select features (see Section5 for a list of probe functions).

7. Click onFLANN Parameterstab, and select the FLANN parameters for calculating tolerance classes
(see Section6 for details).
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8. Click Run.

The result is given in Fig.20 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation does not partitionan image, the tolerance classes
are displayed upon request. For instance, by clicking on either of the two images, a window appears letting
the user display each tolerance classes containing the subimage selected bythe mouse. Further, the subimage
containing the mouse click contains an ‘X’, and the subimages can be coloured white or black.

9 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphology as described in [2,6], where the
evaluation is labelled the Near Set Index (NSI). For instance, given a set of probe functionsB, and an image
A, this frame can perform the perceptual erosion or dilation usingB = O/∼B

as the SE. Also, the NSI is
calculated if perceptual erosion was selected. A sample calculation using thisframe is given in Fig.21 and
was obtained by the following steps:

Figure 21: Sample run of the segmentation evaluation frame using a window size of 2 × 2, andB =
{φEdge Present}.

1. Click Load Image & Segmentbutton.

2. Select an image clickOpen.

3. Select segmentation image and clickOpen. Image should contain only one segment and the segment
must be white(255, 255, 255) and the background must be black(0, 0, 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure this is the case).

4. Click eitherErodeto perform perceptual erosion and segmentation evaluation, orDilate to perform
perceptual dilation (no evaluation takes place during dilation).

5. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.
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6. Select number of features (maximum allowed is four).

7. Select features (see Section5 for a list of probe functions).

8. Click Run

The result is given in Fig.21. The bottom left window contains an image of the equivalence classes
where each colour represents a different class. The bottom right window contains either the erosion or
dilation of the segment. Clicking on any of the three images will display the equivalence class containing
the mouse click in the bottom right image. The NSI is also displayed on the left hand side (if applicable).

10 Near image frame

This frame is used to evaluate the similarity of images using the similarity measures given in Section3. The
user has the option of comparing a pair of images (and viewing the resulting tolerance classes), or comparing
a query image to an entire directory of images. The following two subsections outline the steps involved
under both options.

10.1 Evaluating a pair of images

The steps involved in comparing a pair of images is a follows, and sample outputfor this process is given in
Fig. 22.

Figure 22: Sample run comparing a pair of images using a window size of20×20, 18 features, andε = 0.7.

1. Select theNew near image windowicon, select File→New near image window, or press Alt+N.

2. SelectA pair of images(the default value) from theSelect type of Comparisonwindow, and click OK.

3. Click Load Imagesbutton and select two images.

4. Click theSet Parametersbutton.
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5. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

6. Selectε, a value in the interval[0,
√
l] wherel is the number of features (length of object description).

7. Select number of features (maximum allowed is 24).

8. Select features (see Section5 for a list of probe functions).

9. Click onFLANN Parameterstab, and select the FLANN parameters for calculating tolerance classes
(see Section6 for details).

10. ClickRun.

The result is given in Fig.22 where the left side contains the first image, and the right side contains the
second image. Clicking in any of the two images will bring up a window that allows the user to view each
tolerance class containing the subimage selected by the mouse. Further, the subimage containing the mouse
click contains an ‘X’, and the subimages can be coloured white or black. Also, the similarity of the images
is evaluated using the measures described in Section3, where the results are displayed on the left hand side.

10.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a directory containing imagesis as follows, and sample
output for this process is given in Fig.23.

Figure 23: Sample run comparing an image to a directory of images using a window size of20 × 20, 18
features, andε = 0.2.

1. Select theNew near image windowicon, select File→New near image window, or press Alt+N.

2. SelectQuery image with a directory of imagesfrom theSelect type of Comparisonwindow, and click
OK.
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3. Click Load Query Image + Dir.button and select an image plus a directory containing images for
comparison with query image.

4. Click theSet Parametersbutton.

5. Select window size. The value is taken as the square root of the area for a square subimage,e.g., a
value of 5 creates a subimage of 25 pixels.

6. Selectε, a value in the interval[0,
√
l] wherel is the number of features (length of object description).

7. Select number of features (maximum allowed is 24).

8. Select features (see Section5 for a list of probe functions).

9. Click onFLANN Parameterstab, and select the FLANN parameters for calculating tolerance classes
(see Section6 for details).

10. ClickRun.

The result is given in Fig.22 where the left side contains the query image, and the right side contains
an image from the directory. Clicking in any of the two images will bring up a window that allows the
user to view the images from the directory in the order they were ranked by the selected similarity measure
(see Section3 for a description of the measures). In addition, three output files are created containing the
similarity measure of each image in the database, sorted from most similar to least similar. Finally, three
figures are also displayed plotting the similarity measures vs. images in the directory for all three measures.
Note, the results are sorted from best to worst, so the output files are alsorequired to related the abscissae
to actual image files.

11 Feature display frame

This frame is used to display the output of processing an image with a specific probe function. A sample
calculation using this frame is given in Fig.24and was obtained by the following steps:

Figure 24: Sample run of the feature display frame.
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1. Click Load Imagebutton and select an image.

2. Select features (see Section5 for a list of probe functions).

3. Select probe function

4. Click Display feature.
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