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Abstract

This report introduces version V3.0 of the Near set Evaluation And Recognition (NEAR) system.
The goal of the NEAR system is to extract perceptual information from images using near set theory,
which provides a framework for measuring the perceptual nearness of objects. The contributions of this
report are an introduction to the NEAR system as an application of near set theory to image processing, a
feature-based approach to solving the image correspondence problem, and a first step toward automating
the extraction of perceptual information from images where there is interest in measuring the degree of
resemblance between images. This new version of the NEAR system includes region-of-interest and
image neighbourhood analysis. For the first time, topological structures in digital images are considered.
Various distance functions are implemented to quantify the degree nearness or apartness of pairs of
digital images.
Keywords: Digital images, distance functions, features, image analysis, metrics, near sets, nearness,
neighbourhoods, pattern recognition, perception, topological structures.
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1 Introduction

The goal of the NEAR system is to demonstrate applications of the near set theory presented in [1–15]. The
system implements a Multiple Document Interface (MDI) (see, e.g., Fig.1), where each separate processing
task is performed in its own child frame. The objects (in the near set sense) in this system are subimages of
the images being processed and the probe functions (representing features) are image processing functions
defined on the subimages. The system was written in C++ and was designed to facilitate the addition of new
processing tasks and probe functions1. Currently, the system performs a number major tasks, namely, dis-
playing equivalence and tolerance classes for an image, performing segmentation evaluation, measuring the
nearness of two images, determining the nearness of neighbourhoods of points in pairs of regions of interest
(ROIs), and displaying the locations of equivalence class subimages for a selected feature. This report is
organized as follows: Section 2 gives some background on near set theory, and Section 3 demonstrates the
application of near set theory to images. Finally, Sections4-7 describe the operation of the GUI.

Figure 1: NEAR system GUI.

2 Near sets

Near set theory focuses on nonempty sets of perceptual objects with matching descriptions. Specifically, let
O represent a nonempty set of available objects. The description of an object x ∈ O is given by

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the description and each φi(x) is a probe function for a particular feature in the
description of the object x. The notion of a probe function in near sets is inspired by Monique Pavel [18],

1Parts of the Graphical User Interface (GUI) were inspired by the GUI reported in [16] and the wxWidgets example in [17].
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where a probe function that is invariant relative to a transformation of the images results in matching function
(feature) values. In the near set approach, a real-valued funcion φ : O −→ �, O a set of images, is a probe
function if, and only if, φ represents an image feature with values that are in the description of a perceptual
object, in particular, in the description of an image [19–21]. Furthermore, a set F can be defined that
represents all the probe functions used to describe an object x. Next, a perceptual system S can be defined
as S = 〈O,F, {V alφi

}φi∈F〉, where F is the set of all possible probe functions that take as the domain
objects in O, and {V alφi

}φi∈F is the value range of a function φi ∈ F. For simplicity, a perceptual system
is abbreviated as 〈O,F〉 when the range of the probe functions is understood. It is the notion of a perceptual
system that is at the heart of the following definitions.

Definition 1 Normative Indiscernibility Relation [19] Let 〈O,F〉 be a perceptual system. For every B ⊆
F, the normative indiscernibility relation ∼B is defined as follows:

∼B= {(x, y) ∈ O ×O : ‖ φ(x) − φ(y) ‖= 0},

where ‖·‖ represents the l2 norm. If B = {φ} for some φ ∈ F, instead of ∼{φ} we write ∼φ.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak in 1981 [22]. Using the
indiscernibility relation, objects with matching descriptions can be grouped together forming granules of
highest object resolution determined by the probe functions in B. This gives rise to an elementary set (also
called an equivalence class)

x/∼B = {x′ ∈ O | x′ ∼B x},
defined as a set where all objects have the same description. Similarly, a quotient set is the set of all
elementary sets defined as

O/∼B = {x/∼B | x ∈ O}.
Defn. 1 provides the framework for comparisons of sets of objects by introducing a concept of nearness

within a perceptual system. Sets can be considered near each other when they have “things” in common. In
the context of near sets, the “things” can be quantified by granules of a perceptual system, i.e., the elementary
sets. The simplest example of nearness between sets sharing “things” in common is the case when two sets
have indiscernible elements. This idea leads to the definition of a weak nearness relation.

Definition 2 Weak Nearness Relation [2]
Let 〈O,F〉 be a perceptual system and nonempty subsets X,Y ⊆ O. A set X is weakly near to a set Y
within the perceptual system 〈O,F〉 (X ��

F
Y ) iff there are x ∈ X and y ∈ Y and there is B ⊆ F such that

x ∼B y. In the case where sets X,Y are defined within the context of a perceptual system as in Defn2, then
X,Y are weakly near each other.

An examples Defn. 2 is given in Fig. 2 where the grey lines represent equivalence classes. The sets X and
Y are weakly near each other in Fig. 2 because they both share objects belonging to the same equivalence
class.

Defn. 2 can be used to define a Nearness Measure (NM) between two nonempty sets X and Y [5, 9].
Let Z = X ∪ Y and let the notation

[z/∼B ]X = {z ∈ z/∼B | z ∈ X},

denote the portion of the elementary set z/∼B that belongs to X, and similarly, use the notation

[z/∼B ]Y = {z ∈ z/∼B | z ∈ Y },

CI Laboratory TR-2012-019 2



to denote the portion that belongs to Y . Further, let the nonempty sets X and Y be weakly near each other
using Defn. 2. Then, a NM between X and Y is given by

NM∼B =

( ∑
z/∼B∈Z/∼B

|z/∼B |
)−1 ∑

z/∼B∈Z/∼B

|z/∼B |
min(|[z/∼B ]X |, |[z/∼B ]Y |)
max(|[z/∼B ]X |, |[z/∼B ]Y |)

(1)

The idea behind Eq. 1 is that sets that are similar should have similar number of objects in each equivalence
class. Thus, for each equivalence class obtained from Z = X ∪ Y , Eq.1 counts the number of objects that
belong to X and Y and takes the ratio (as a proper fraction) of their cardinalities. Furthermore, each ratio
is weighted by the total size of the equivalence class (thus giving importance to the larger classes) and the
final result is normalized by dividing by the sum of all the cardinalities. The range of Eq.1 is in the interval
[0,1], where a value of 1 is obtained if the sets are equivalent and a value of 0 is obtained if they have no
elements in common.

Figure 2: Example of Defn. 2.

O/∼B
X

Y

As an example of the degree of nearness between two sets, consider Fig.3 in which each image consists
of two sets of objects, X and Y . Each colour in the figures corresponds to an elementary set where all
the objects in the class share the same description. The idea behind Eq. 1 is that the nearness of sets in
a perceptual system is based on the cardinality of equivalence classes that they share. Thus, the sets in
Fig. 3(a) are closer (more near) to each other in terms of their descriptions than the sets in Fig.3(b).

(a) (b)

Figure 3: Example of degree of nearness between two sets: (a) High degree of nearness, and (b) low degree
of nearness.

2.1 Tolerance relation

A perception-based approach to discovering resemblances between images leads to a tolerance class form
of near sets that models human perception in a physical continuum viewed in the context of image tolerance
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spaces. A tolerance space-based approach to perceiving image resemblances hearkens back to the obser-
vation about perception made by Ewa Orłowska in 1982 [23] (see, also, [24]), i.e., classes defined in an
approximation space serve as a formal counterpart of perception.

The term tolerance space was coined by E.C. Zeeman in 1961 in modeling visual perception with
tolerances [25]. A tolerance space is a set X supplied with a binary relation � (i.e., a subset � ⊂ X ×X)
that is reflexive (for all x ∈ X, x � x) and symmetric (i.e., for all x, y ∈ X, x � y implies y � x) but
transitivity of � is not required. For example, it is possible to define a tolerance space relative to subimages
of an image. This is made possible by assuming that each image is a set of fixed points. Let O denote a set
of perceptual objects (e.g., gray level subimages) and let gr(x) = average gray level of subimage x. Then
define the tolerance relation

�gr= {(x, y) ∈ O ×O | |gr(x)− gr(y)| ≤ ε},

for some tolerance ε ∈ � (reals). Then (O,�gr) is a sample tolerance space. The tolerance ε is directly
related to the exact idea of closeness or resemblance (i.e., being within some tolerance) in comparing ob-
jects. The basic idea is to find objects such as images that resemble each other with a tolerable level of
error. Sossinsky [26] observes that main idea underlying tolerance theory comes from Henri Poincaré [27].
Physical continua (e.g., measurable magnitudes in the physical world of medical imaging [9]) are contrasted
with the mathematical continua (real numbers) where almost solutions are common and a given equation
have no exact solutions. An almost solution of an equation (or a system of equations) is an object which,
when substituted into the equation, transforms it into a numerical ’almost identity’, i.e., a relation between
numbers which is true only approximately (within a prescribed tolerance) [26]. Equality in the physical
world is meaningless, since it can never be verified either in practice or in theory. Hence, the basic idea in
a tolerance space view of images, for example, is to replace the indiscerniblity relation in rough sets [28]
with a tolerance relation in partitioning images into homologous regions where there is a high likelihood of
overlaps, i.e., non-empty intersections between image tolerance classes. The use of image tolerance spaces
in this work is directly related to recent work on tolerance spaces (see, e.g., [3, 4, 7–9, 29–34]).

When dealing with perceptual objects (especially, components in images), it is sometimes necessary to
relax the equivalence condition of Defn. 1 to facilitate observation of associations in a perceptual system.
This variation is called a tolerance relation that defines yet another form of near sets [3, 4, 7] and is given in
Defn. 3.

Definition 3 Tolerance Nearness Relation [3]
Let 〈O,F〉 be a perceptual system and let ε ∈ R. For every B ⊆ F the tolerance relation∼=B is defined as
follows:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖≤ ε}.
If B = {φ} for some φ ∈ F, instead of ∼={φ} we write ∼=φ. Further, for notational convince, we will write
∼=B instead of∼=B,ε with the understanding that ε is inherent to the definition of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance class can be defined as

x/∼=B = {y ∈ O | y ∼=B x′ ∀ x′ ∈ x/∼=B}. (2)

Note, Defn. 3 covers O instead of partitioning it because an object can belong to more than one class. As
a result, Eq. 2 is called a tolerance class instead of an elementary set. In addition, each pair of objects x, y
in a tolerance class x/∼=B must satisfy the condition ‖ φ(x) − φ(y) ‖≤ ε. Next, a quotient set for a given a
tolerance relation is the set of all tolerance classes and is defined as

O/∼=B = {x/∼=B | x ∈ O}.

CI Laboratory TR-2012-019 4



Table 1: Tolerance Class Example

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079

x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489

x4 .7972 x9 .4722 x14 .4990 x19 .9170

x5 .6281 x10 .4523 x15 .6289 x20 .7143

Notice that the tolerance relation is a generalization of the indiscernibility relation given in Defn.1 (obtained
by setting ε = 0). As a result, Defn. 2 and Eq. 1 can be redefined with respect to the tolerance relation2.

The following simple example highlights the need for a tolerance relation as well as demonstrates the
construction of tolerance classes from real data. Consider the 20 objects in Table1 that where |φ(xi)| = 1.
Letting ε = 0.1 gives the following tolerance classes:

X/∼=B = {{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},
{x2, x7, x18, x19},
{x3, x12, x17},
{x4, x13, x20}, {x4, x18},
{x5, x6, x15, x16}, {x5, x6, x15, x20},
{x6, x13, x20}}

Observe that each object in a tolerance class satisfies the condition ‖ φ(x)− φ(y) ‖≤ ε, and that almost all
of the objects appear in more than one class. Moreover, there would be twenty classes if the indiscernibility
relation was used since there are no two objects with matching descriptions.

3 Perceptual image processing

Near set theory can be easily applied to images. For example, define a RGB image as f = {p1,p2, . . . ,pT },
where pi = (c, r,R,G,B)T, c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈ [0, 255], and M,N respectively denote the
width and height of the image and M × N = T . Further, define a square subimage as fi ⊂ f with the
following conditions:

f1 ∩ f2 . . . ∩ fs = ∅,
f1 ∪ f2 . . . ∪ fs = f, (3)

where s is the number of subimages in f . The approach taken in the NEAR system is to restrict all subimages
to be square except when doing so violates Eq. 3. For example, the images in the Berkeley Segmentation
Dataset [35] often have the dimension 321× 481. Consequently, a square subimage size of 25 will produce
6240 square subimages, 96 subimages of size 1× 5, 64 subimages of size 5× 1 and 1 subimage consisting
of a single pixel. Next, O can be defined as the set of all subimages, i.e., O = {f1, . . . , fs}, and F is a set
of functions that operate on images (see, e.g. Table 2 for examples of probe functions used in the NEAR
system or [36] for other examples). Once the set B has been selected, the elementary sets are simply created
by grouping all objects with the same description and the quotient set is made up of all the elementary sets.

2The two relations were treated separately in the interest of clarity.
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Finally, a simple example of these concepts is given in Fig. 4 where the left image contains an octagon
with a radius of 100 pixels located at the centre of the 400 × 400 image, and the right image contains the
elementary sets obtained using B = {φavg(fs)} and a subimage size of 10× 10.

Table 2: Example probe functions

φi Description

φavg(fs) Average greyscale value of subimage

φIC(fs) Information content of subimage [2]

φNormR(fs) Average normalized R value of subimage [36]

(a) (b)

Figure 4: Example of near set theory in the context of image processing: (a) Original image, and (b)
elementary sets obtained from (a) using φavg(fs).

Observe that three elementary sets are obtained in Fig.4(b), namely, the light grey background, the dark
grey octagon interior, and the black squares along the diagonals. The black squares are created by subimages
that contain both black and white pixels (in the original image) and are located only on the diagonals due to
the subimage size and shape, and the position and radius of the hexagon. All other subimages are uniformly
white or black. Thus, we are presented with perceptual information in the form of three equivalence classes
when restricted to only being able to describe the original image with the probe function B = {φavg(fs)}
and a subimage size of 10 × 10. This example clearly demonstrates that perceptual information obtained
from the application of near set theory is represented by the elementary sets (formed by the grouping of
objects with similar descriptions), and the information gained is always presented with respect to the probe
functions contained in B.

4 Equivalence class frame

This frame calculates equivalence classes using the Perceptual Indiscernibility Relation Perceptual Indis-
cernibility relation in Definition 1, i.e., given an image X, it will calculate X/∼B , where the objects are
Subimage subimages of X. An example using this frame is given in Fig.5 and is obtained by the following
steps:

1. Click Load Image button and select an image.

2. Click the Set Parameters button.

CI Laboratory TR-2012-019 6



Figure 5: Sample run of the equivalence class frame using a window size of 2 × 2 and B = {φAverage Grey

(Image shown in NEAR system used with permission [37]).

3. Select window size. The value is taken as the square root of the area for a square subimage, e.g., a
value of 5 creates a subimage containing 25 pixels.

4. Select number of features (maximum allowed is 24).

5. Select features.

6. Click Run.

The result is given in Fig. 5, where the bottom left window contains an image of the equivalence classes,
and each colour represents a single class. The bottom right window is used to display equivalence classes
by clicking in any of the three images. The coordinates of the mouse click determine the equivalence class
that is displayed. The results may be saved by clicking on the save button.

5 Tolerance class frame

This frame finds tolerance classes using the Perceptual Tolerance Relation perceptual tolerance relation
in Definition, i.e., given an image X, this frame finds H∼=B,ε

(O), where the objects are subimages of X
Subimage (see Section for further explanation). An example using this frame is given in Fig. 6 and is
obtained by the following steps:

1. Click Load Image button and select an image.

2. Click the Set Parameters button.

CI Laboratory TR-2012-019 7



Figure 6: Sample run of the tolerance class frame using a window size of 20×20, 18 features used to generate
the results in this thesis, and ε = 0.7 (Image shown in NEAR system used with permission [38, 39]).

3. Select window size. The value is taken as square root of the area for a square subimage, e.g., a value
of 5 creates a subimage containing 25 pixels.

4. Select ε, a value in the interval [0,
√
l], where l is the number of features (length of object description).

5. Select number of features (maximum allowed is 24).

6. Select features.

7. Click on FLANN Parameters tab, and select the FLANN parameters for calculating tolerance classes.

8. Select ε, a value in the interval [0,
√

Num. features].

9. Click Run.

The result is given in Fig. 6 where the left side is the original image, and the right side is used to
display the tolerance classes. Since the tolerance relation covers an image instead of partitioning the image,
the tolerance classes are displayed upon request. For instance, by clicking on either of the two images, a
window appears letting the user display each tolerance class containing the subimage selected by the mouse.
Further, the subimage containing the mouse click contains an ‘X’, and the subimages can be coloured white
or black.

CI Laboratory TR-2012-019 8



6 Segmentation evaluation frame

This frame performs segmentation evaluation using Perceptual Morphology perceptual morphology as de-
scribed in Section, where the evaluation is labelled the Near Set IndexNear Set Index (NSI). For instance,
given a set of Probe Functions probe functions B, an image, and a segmentation of the image (labelled A),
this frame can perform the perceptual erosion or dilation using B = O/∼B as the structuring element. Also,
the NSI is calculated if perceptual erosion was selected. A sample calculation using this frame is given in
Fig. 7 and is obtained by the following steps:

Figure 7: Sample run of the segmentation evaluation frame using a window size of 2 × 2, and B =
{φEdge Present} (Image shown in NEAR system used with permission [35]).

1. Click Load Image & Segment button.

2. Select an image click Open.

3. Select segmentation image and click Open. Image should contain only one segment and the segment
must be white (255, 255, 255) and the background must be black (0, 0, 0). The image is displayed in
the top frame, while the segment is displayed in the bottom right (make sure this is the case).

4. Click either Erode to perform perceptual erosion and segmentation evaluation, or Dilate to perform
perceptual dilation (no evaluation takes place during dilation).

5. Select window size. The value is taken as the square root of the area for a square subimage, e.g., a
value of 5 creates a subimage containing 25 pixels.

6. Select number of features (maximum allowed is 24).

7. Select features.

CI Laboratory TR-2012-019 9



8. Click Run.

The result is given in Fig. 7 where the bottom left window contains the an image of the equivalence
classes where each colour represents a different class. The bottom right window contains either the erosion
or dilation of the segmentation. Clicking on any of the three images will display the equivalence class
containing the mouse click in the bottom right image. The NSI is also displayed on the left hand side (if
applicable).

7 Near image frame

This frame is used to calculate the similarity of images using the measures given in this thesis. The use has
the option of comparing a pair of images (and viewing the resulting tolerance classes), or comparing a query
image to an entire directory of images. The following two subsections outline the steps involved under both
options.

7.1 Evaluating a pair of images

The steps involved in comparing a pair of images are as follows, and sample output for this process is given
in Fig. 8.

Figure 8: Sample run comparing a pair of images using a window size of 20×20, 18 features used to generate
the results in this thesis, and ε = 0.7 (Image shown in NEAR system used with permission [38, 39]).

1. Select the New near image window icon, select File→New near image window, or press Alt+N.

2. Select A pair of images (the default value) from the Select type of Comparison window, and click OK.
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3. Click Load Images button and select two images.

4. Click the Set Parameters button.

5. Select window size. The value is taken as the square root of the area for a square subimage, e.g., a
value of 5 creates a subimage containing 25 pixels.

6. Select ε, a value in the interval [0,
√
l], where l is the number of features (length of object description).

7. Select number of features (maximum allowed is 24).

8. Select features.

9. Click on FLANN Parameters tab, and select the FLANN parameters for calculating tolerance classes.

10. Click Run.

The result is given in Fig. 8 where the left side contains the first image, and the right side contains the
second image. Clicking in any of the two images will bring up a window that allows the user to view each
tolerance class containing the subimage selected by the mouse. Further, the subimage containing the mouse
click is marked with an ‘X’, and the subimages can be coloured white or black. Also, the similarity of the
images is evaluated using the measures described in this thesis, where the results are displayed on the left
hand side.

7.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a directory containing images is as follows.

1. Select the New near image window icon, select File→New near image window, or press Alt+N.

2. Select Query image with a directory of images from the Select type of Comparison window, and click
OK.

3. Click Load Query Image + Dir. button and select an image plus a directory containing images for
comparison with query image.

4. Click the Set Parameters button.

5. Select window size. The value is taken as the square root of the area for a square subimage, e.g., a
value of 5 creates a subimage containing 25 pixels.

6. Select ε, a value in the interval [0,
√
l], where l is the number of features (length of object description).

7. Select number of features (maximum allowed is 24).

8. Select features.

9. Click on FLANN Parameters tab, and select the FLANN parameters for calculating tolerance classes.

10. Click Run.
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The result is the left side contains the query image, and the right side contains an image from the
directory. Clicking in any of the two images will bring up a window that allows the user to view the images
from the directory in the order they were ranked by the selected similarity measure. In addition, three output
files are created containing the similarity measure of each image in the database, sorted from most similar
to least similar. Finally, three figures are also displayed plotting the similarity measures vs. images in the
directory for all three measures. Note, the results are sorted from best to worst, so the output files are also
required to relate the abscissae to actual image files.

8 Image neighbourhood and region of interest frame

The problem solved in this NEAR system frame is how to measure the nearness of sets of neighbourhoods.
This frame is also used to measure the similarity of images, however, the user must target specific portions
of each image by defining Regions of Interest (ROI). This part of the NEAR system constructs a collection
of open neighbourhoods that cover a particular ROI. In effect, the NEAR system topologises a part of an
image represented by a ROI. The following details the additional input parameters for this frame, a sample
run, the algorithm used to produce the output, and a discussion the results.

Remark 1 The solution to the neighbourhood nearness problem stems from the work by M. Katĕtov [40]
and S. Tiwari [41] on merotopic spaces. M. Katĕtov observed that merotopic spaces are obtained by topolo-
gising certain parts of a nonempty set. The term mero comes from the Greek word meros (part). Historically,
a consideration of merotopic distance starts with a study of approach spaces (see, e.g., [41–43]). Usually, an
approach space distance function δ : X ×P(X) −→ [0,∞] that maps a member of a set and a subset (part)
of a set to a number in [0,∞]. For more about this problem in near set theory, see, e.g., [12, 13, 44, 45].

8.1 Additional Parameters

The user is presented with the following additional parameters for this frame.

• Nearness Type: Determines how the C̆ech distance [46] is used to form the result. Indicating Strong
results in looking for neighbourhoods with the smallestC̆ech distance, while setting the nearness type
to Weak will select neighbourhoods with the largest C̆ech distance less than ε.

• Dilation Amount and Iteration: Dilation Iteration sets the number of iterations for performing calcu-
lations. After each calculation, the ROI is dilated (enlarged) by the number of pixels specified by the
Dilation Amount.

Remark 2 For a source of examples of what is known ε-approach nearness on a nonempty set X, con-
sider the gap distance function introduced by C̆ech in his 1936–1939 seminar on topology [46]. For an
introduction to ε-approach nearness, see, e.g., [10, 11].

The steps involved in comparing a pair of images are as follows, and sample output for this process is
given in Fig. 9.

1. Select the New Image Neighbourhood icon, select File→New near image window, or press Alt+B.

2. Click Load Images button and select two images.

3. Click the Set Parameters button.

4. Select window size. The value is taken as the square root of the area for a square subimage, e.g., a
value of 5 creates a subimage containing 25 pixels.
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Figure 9: Sample run comparing a pair of images using a window size of 1×1, average R, G, and B features,
ε = 0.1, strong nearness type, dilation amount of 1, and 10 dilation iterations.

5. Select ε, a value in the interval [0,
√
l], where l is the number of features (length of object description).

6. Select the nearness type.

7. Select the dilation amount and number of iterations.

8. Select number of features (maximum allowed is 24).

9. Select features.

10. Click Run.

Completing Step 10 causes the system to calculates probe function values only. Then, the user is
prompted to select two ROIs, one for each image. This can be accomplished clicking and dragging with
the mouse on each image. Note, the ROI for the left (resp. right) image is labelled ROIq (ROIt). Once the
second ROI has been selected, the system will calculated the similarity of images according to the following
algorithm.

1. Initialize the output by setting bROIq ← ∅ and bROIt ← ∅.
2. Initialize the smallest distance, sd←∞.

3. Go through all subimages of ROIq. By default, the window size is set to 1. Thus, with default
settings, the word pixels could replace subimages in the following steps.

4. For each subimage, pq ∈ ROIq perform the following:.

(a) Find N(pq).

(b) Look for pt ∈ ROIt such that pq ∼=B,ε pt .
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(c) If a subimage pt can be found in Step 4b, then find N(pt). Otherwise, go back to Step 4.

(d) Calculate the C̆ech distance between N(pq) and N(pt) defined as

Dρ‖·‖(N(pq), N(pt)) = inf{ρ‖·‖(a, b) : a ∈ N(pq), b ∈ N(pt)},

where

ρ‖·‖(a, b) =
l∑

i=1

|φi(a)− φi(b)|.

(e) If Dρ‖·‖(N(pq), N(pt)) < sd, then set bROIq ← N(pq) and bROIt ← N(pt).

(f) Else, if Dρ‖·‖(N(pq), N(pt)) == sd, then bROIq ∪N(pq) and bROIt ∪N(pt).

(g) Loop back to Step 4.

Note, the above algorithm is for nearness type Strong. If nearness type Weak is selected, the following steps
need to be changed.

• Replace Step 2 with: Initialize the largest distance, ld← 0, and replace all instances of sd with ld.

• Replace the test in Step 4e with: Dρ‖·‖(N(pq), N(pt)) > ld && Dρ‖·‖(N(pq), N(pt)) ≤ ε.

Finally, the above algorithm is repeated Dilation Iteration times, where, on each iteration, the ROIs are
increased by Dilation Amount pixels.

The result of a sample run is given in Fig. 9. After the calculations terminate, a pop-up window is
presented to the user to allow them to cycle through the best ROIs for each iteration. If this window is
closed, it can be reopened by clicking on the Cycle ROIs button. A plot is also present to the user containing
the best C̆ech values after each iteration. Finally, all the best ROIs are saved as images in the same directory
as the exe.

Figure 10: Sample run of the feature display frame (Image shown in NEAR system used with permis-
sion [35]).
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9 Feature display frame

This frame is used to display the output of processing an image with a specific Probe Function probe func-
tion. An example using this frame is given in Fig. 10 and is obtained by the following steps:

1. Click Load Image button and select an image.

2. Select features.

3. Select probe function.

4. Click Display feature.
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