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Continuous Ramsey Theory & B*[g] Sets

@ “A symmetric subset of the reals is one that remains invariant
under some reflection x — ¢ — x. We consider, for any
0 < e <1, the largest real number A(e) such that every
subset of [0, 1] with measure greater than € contains a
symmetric subset with measure A(e).” [Martin & O’'Bryant
2007]

@ Discrete problem [Green 2001]: a set S of integers is called a
B*[g] set if for any given m there are at most g ordered pairs
(s1,52) € S x S with s; + s = m.

o Interest: estimating A(e) or the cardinality of B*[g] sets

° inf  ||f % f % f]|, subject to [|f|l1 =1
feCo(—1,1)
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° inf  ||f % f % f||, subject to |||l = 1.
feCo(—1,1)

In [Martin & O'Bryant 2007], a bound is obtained:

IIf * f % flloo

~ 0.287 3...
feco(-11)  [[f]1

Since a constant function has minimal infinity-norm, this is
equivalent to calculating:

e Find f € C%(—1,1) such that f x f x f =1 on [-1,1].
@ Previous work's estimate is based on:
1, 0<|x <1,
K = 1.2015
309 =1 0.6644 +0.3356 (2tant(322))7 7, 1<k <2

Where is the intuition? How can we systematically improve?
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Approach

@ Experimental mathematics: use principles of numerical
analysis to guide the construction of a good algorithm
e Systematic & general
e Symmetry and convolution properties to reduce complexity
o Exponential convergence <> geometric decay in
approximation's coefficients

@ To build intuition

o Use a general & universal software package for computing with
functions. Chebfun!

e Since f is defined on an interval, a Chebyshev interpolant is a
good place to begin

@ Outcome

e Convincing numerical evidence for convergence
e Optimized Julia code using DEQuadrature.jl and ApproxFun.jl
e High accuracy approximation
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Convolution

For integrable f compactly supported on [a, b] and integrable g on
[c, d], convolution is defined as:

min(b,x—c)

(f*xg)(x) = / f(y)g(x —y)dy.

max(a,x—d)
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Convolution

For integrable f compactly supported on [a, b] and integrable g on
[c, d], convolution is defined as:

min(b,x—c)
(<) = | F(y)a(x - y)dy.

max(a,x—d)

The parallelogram of the convolution domain can be explicitly

written:
([ fe-nay. xelatebid,
b
(Fre) =1 [ fe-Ndy. xelb+catd
b
\ /_df(y)g(x—y)dy, x€la+d,b+d].

Straightforward modifications for functions on open intervals.
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Building Intuition

Using Chebfun, we collocate at Chebyshev roots to remove
possibility of Runge's phenomenon:
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@ Oscillations on the order of 2% = a generalized Gibbs
phenomenon

@ This could imply the function is singular at the endpoints

7/26



Building Intuition
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Conjecture Coefficients

@ We see an algebraic decay in the coefficients = a poor
approximation

@ Since convolution is smoothing, f can have endpoint
exponents as low as —2/3 for f x f x f € C°[-3,3]
g(x)

VI-o

o Conjecture: f(x) = for some analytic g.

8/26



Convolving with Singularities

@ Chebfun has a very efficient algorithm for convolution of
Chebyshev series [Hale & Townsend 2014]

o Convert Chebyshev to Legendre coefficients with
@ (N Iog2 N/ log log N) complexity

e Use recurrences derived from spherical Bessel functions to
convolve with O((M + N)?) complexity

o Revert to Chebyshev coefficients

o Significantly cheaper than quadrature with O((M + N)3)
complexity

@ However, the algorithm is not applicable to functions with
endpoint singularities

@ Challenge comes from Jacobi elliptic integral of the first kind:
1 1 2F(iv4 — x2/x,ix/V4 — x?)
* (x) =% :
V1—x2 V1-x2 V4 — x?

~ log|8/x|, as x—0.
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Trapezoidal Rule

The trapezoidal rule /ab f(x)dx ~ (b — a) [M] .

2
n—1
Flxe_1) + f
@ The composite version T(h) = hz G 1)2+ (Xk), where
k=1

h:b—a

and x, = a+ k h.

Euler-Maclaurin summation formula:

T(h)— / F(x)dx ~ ; h? (ff)’! (f(”’l)(b) - f(2’*1)(a)) , as h—0.

If £ is periodic, or if f(")(-) — 0 at endpoints, the convergence
is faster than any power of h.

@ Variable transformations ¢ : R — (a, b) with exponential
decay [Stenger 1973] and [Takahasi & Mori 1974].
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Quadrature by Variable Transformation

Consider the integral:

b (o)
/ F(x) dx = /+ F(6(£)) (1) dt.

—0o0

Variable transformations which induce single exponential endpoint
decay are:

x = dsn(t) = ‘“; by (b 5 a) tanh(t/2),

dx = ¢lg(t)dt = (%) sech?(t/2) dt,

Double exponential endpoint decay are:

x = ¢pr(t) = a+b+ (b;a) tanh (gsinh t),

2
dx = ¢pg(t)dt = <$) sech? (g sinh t) gcosh tdt.
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Quadrature by Variable Transformation

Example [Mori & Sugihara 2001]: i

J3 x"H*log(1/x) dx = 16/9. ,

Integrand

SE transformation DE transformation
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Quadrature by Variable Transformation
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Quadrature by Variable Transformation

Let d be a positive number and let Z4 = IingJ P4(€) denote the
e—
strip region of width 2d about the real axis:

D4(e) ={z€C:|Rez| < e, |Imz| < d(1—e¢)}.

Let B(Z4) be the family of functions such that:

NMi(f, Z4) = lim / |f(z)|dz < 4o0.

e—0

0 0, (€)
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Quadrature by Variable Transformation

Let w(z) be a non-vanishing function defined on %, and let:
H>®(24,w) ={f : D4 — C| f(2) is analytic in Dy, and ||f|| < +o0},
where the norm is given by:

f(2)
w(z)|

Let é’ﬁ,h(H‘X’(@d,w)) denote the error norm in H*(Z4,w):

[f[| = sup
zZE€EDy

+00 +n
/ f(x)dx —h Y f(kh)|.

% k=—n

Enp(H®(Zg,w)) = sup
FEH(T4.0)
lIF1<1
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Quadrature by Variable Transformation
Theorem [Sugihara 1997]

Suppose:
0 w(z) € B(%4);
@ w(z) does not vanish at any point in Z4 and takes real values
on the real axis;

O arexp(—flx]) < [w(x)| < azexp(—flx]), x€R,
where oy, ap, and 5 > 0.

Then:
Enn(H™ (0, w)) < Cawexp (—(mdBN)),

where N = 2n + 1, the mesh size h is chosen optimally as:

[27d
h— W,

and Cy,, is a constant depending on d and w.
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Quadrature by Variable Transformation
Theorem [Sugihara 1997]

Suppose:
O w(z) € B(%q);
@ w(z) does not vanish at any point in Z4 and takes real values
on the real axis;

© arexp (—pre7™) < |w(x)| < azexp (~fe™™), xeR,
where a1, az, 81, f2,7 > 0.
Then:

dyN
S < _ . mayv
Enp(H (Za,w)) < Cawexp ( log(mdyN/B2) )’

where N = 2n+ 1, the mesh size h is chosen optimally as:

he log(2wd~yn/ )
==

and Cy,, is a constant depending on d and w.
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An Upper Bound

Nonexistence Theorem [Sugihara 1997]

There exists no function w(z) that satisfies at once:
O w(z) € B(%4);
@ w(z) does not vanish at any point in %, and takes real values
on the real axis;
O w(x)=0 (exp(—,8e7|x|)) as |x| — oo, where 8 > 0, and
dy > m/2.

Outcome:

o Optimality of the DE transformation for the trapezoidal rule.
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An Upper Bound

Nonexistence Theorem [Sugihara 1997]

There exists no function w(z) that satisfies at once:
O w(z) € B(%4);
@ w(z) does not vanish at any point in %, and takes real values
on the real axis;
O w(x)=0 (exp(—ﬂe’7|x|)) as |x| — oo, where 8 > 0, and
dy > m/2.

Outcome:
o Optimality of the DE transformation for the trapezoidal rule.

@ What happens when complex singularities are present?
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Maximizing the Convergence Rate

Problem [Slevinsky & Olver 2015]: How can we maximize the
convergence rate of the trapezoidal rule:

00 +n
| A @ h S Fotkm)d(kn)

k=—n

despite the singularities of f € C? Let

¢ f(o(t))d'(t) € H®(Z4,w) for some d > 0,
and for some w such that:
1. w(z) € B(%4);
Gog = 2. w(z) does not vanish at any point in 24
and takes real values on the real axis;
3. aiexp (—,Ble”‘x‘) < w(x)| < a2 exp (—,Bze”x‘) ,
x € R, where a1, az, 81, 82,7 > 0.
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Maximizing the Convergence Rate

Then we wish to find ¢ € ®,4 such that the convergence rate is
maximized:

wdyN

T

argmax ( —————— subject to dy < —

$ED,q (log(ﬂd’YN/ﬁz)) __2
~ d Nonexistence Theorem

TV
Trapezoidal Convergence Theorem

Result: an infinite-dimensional optimization problem for ¢.
Consider the asymptotic problem as N — oc:

wdyN B wdyN
log(mdyN/B2)  log N + log(mdv/B2)’
N
~ %, as N — oo.

e We maximize the convergence rate when dy = 7/2

e Numerical algorithm is the subject of [Slevinsky & Olver 2015]
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Return to Convolution

Let c = [Cl, o, ..., C"N/21]T, W(X) = (1 - Xz))‘, and x; the (N/2—‘
nonnegative roots of Ty(x). Then:

g(c,x;) = conv(c” Tooyw,conv(c’” Toonw, e’ Toonw))(x) — 1,

Newton iteration is the most efficient nonlinear solver.
By commutativity and associativity of convolution, we have:

[J(g)]ij = 3conv(Tyj_ow, COHV(CTTOQ;NW, CTTOQ;NW))(X,').

For each point x;, we pre-compute the inner autoconvolution, and
[J(g)]i,j can be computed in the cost of only 2 integrals
(parallelogram overlap). By linearity of convolution, g is simply:

glc,x;) = %J(g)c —1.
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DE Convolution & Numerical Evidence for Conjecture

Ifeger-1|

B 10
Degree of Chebyshev polynomial

Convolution Coefficients

Algorithmic complexity scales as O(n?N?) where:
@ nis the number of quadrature nodes
@ N is the number of coefficients
@ 101 quadrature nodes and 9 coefficients takes = 0.1 seconds

per Newton iteration in double precision
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Extended Precision

10" 10

10 20 30
Degree of Chebyshev polynomial

Convolution Coefficients

Algorithmic complexity scales as O(n?N?) where:
@ nis the number of quadrature nodes
@ N is the number of coefficients
@ 1001 quadrature nodes and 23 coefficients takes = 3 hours
per Newton iteration in extended precision
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@ A simple & systematic representation is conjectured for the
continuous function whose 3-fold autoconvolution is constant

@ Geometric convergence is observed with inverse square root
endpoint singularities with O(n?> N?) complexity
e Previous result [Martin & O'Bryant 2007]:
o D fl
reco(-11)  [Iflx

@ New result:
[|f = f* flloo

n
feco(-11)  |Iflh
@ Is the function simple or can we determine a closed-form for
the coefficients?

~ 0.287 3...

~ 0.287 319 803 575 759 796 363 627 713 763 526. ..

o The ratio of successive coefficients may offer some insight
o PSLQ may detect a simple representation for the constants

Thank you all very much for your time!
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