A Constant 3-fold Autoconvolution

An experimental approach to numerically estimating the supremum of the 3 -fold autoconvolution for functions $\|f\|_{1}=1$.

Richard Mikael Slevinsky ${ }^{\dagger}$
${ }^{\dagger}$ Mathematical Institute, University of Oxford
Andrew Wiles Building, Radcliffe Observatory Quarter
Woodstock Road, Oxford OX2 6GG
Richard.Slevinsky@maths.ox.ac.uk

$$
\text { February 17, } 2015
$$

Continuous Ramsey Theory \& $B^{*}[g]$ Sets

- "A symmetric subset of the reals is one that remains invariant under some reflection $x \rightarrow c-x$. We consider, for any $0<\epsilon \leq 1$, the largest real number $\Delta(\epsilon)$ such that every subset of $[0,1]$ with measure greater than ϵ contains a symmetric subset with measure $\Delta(\epsilon)$." [Martin \& O'Bryant 2007]
- Discrete problem [Green 2001]: a set S of integers is called a $B^{*}[g]$ set if for any given m there are at most g ordered pairs $\left(s_{1}, s_{2}\right) \in S \times S$ with $s_{1}+s_{2}=m$.
- Interest: estimating $\Delta(\epsilon)$ or the cardinality of $B^{*}[g]$ sets
- $\inf _{f \in C^{0}(-1,1)}\|f * f * f\|_{\infty}$, subject to $\|f\|_{1}=1$
- $\inf _{f \in C^{0}(-1,1)}\|f * f * f\|_{\infty}$, subject to $\|f\|_{1}=1$.
- In [Martin \& O'Bryant 2007], a bound is obtained:

$$
\inf _{f \in C^{0}(-1,1)} \frac{\|f * f * f\|_{\infty}}{\|f\|_{1}} \approx 0.2873 \ldots
$$

- Since a constant function has minimal infinity-norm, this is equivalent to calculating:
- Find $f \in C^{0}(-1,1)$ such that $f * f * f=1$ on $[-1,1]$.
- Previous work's estimate is based on:

$$
K_{3}(x)=\left\{\begin{array}{cc}
1, & 0 \leq|x| \leq 1 \\
0.6644+0.3356\left(\frac{2}{\pi} \tan ^{-1}\left(\frac{1-x / 2}{\sqrt{x-1}}\right)\right)^{1.2015}, & 1 \leq|x| \leq 2
\end{array}\right.
$$

- Where is the intuition? How can we systematically improve?
- Experimental mathematics: use principles of numerical analysis to guide the construction of a good algorithm
- Systematic \& general
- Symmetry and convolution properties to reduce complexity
- Exponential convergence \leftrightarrow geometric decay in approximation's coefficients
- To build intuition
- Use a general \& universal software package for computing with functions. Chebfun!
- Since f is defined on an interval, a Chebyshev interpolant is a good place to begin
- Outcome
- Convincing numerical evidence for convergence
- Optimized Julia code using DEQuadrature.jl and ApproxFun.jl
- High accuracy approximation

Convolution

For integrable f compactly supported on $[a, b]$ and integrable g on $[c, d]$, convolution is defined as:

$$
(f * g)(x)=\int_{\max (a, x-d)}^{\min (b, x-c)} f(y) g(x-y) \mathrm{d} y
$$

For integrable f compactly supported on $[a, b]$ and integrable g on $[c, d]$, convolution is defined as:

$$
(f * g)(x)=\int_{\max (a, x-d)}^{\min (b, x-c)} f(y) g(x-y) \mathrm{d} y
$$

The parallelogram of the convolution domain can be explicitly written:

$$
(f * g)(x)= \begin{cases}\int_{a}^{x-c} f(y) g(x-y) \mathrm{d} y, & x \in[a+c, b+c] \\ \int_{a}^{b} f(y) g(x-y) \mathrm{d} y, & x \in[b+c, a+d] \\ \int_{x-d}^{b} f(y) g(x-y) \mathrm{d} y, & x \in[a+d, b+d]\end{cases}
$$

Straightforward modifications for functions on open intervals.

Using Chebfun, we collocate at Chebyshev roots to remove possibility of Runge's phenomenon:

- Oscillations on the order of $2 \% \Rightarrow$ a generalized Gibbs phenomenon
- This could imply the function is singular at the endpoints

Conjecture

Coefficients

- We see an algebraic decay in the coefficients \Rightarrow a poor approximation
- Since convolution is smoothing, f can have endpoint exponents as low as $-2 / 3$ for $f * f * f \in C^{0}[-3,3]$
- Conjecture: $f(x)=\frac{g(x)}{\sqrt{1-x^{2}}}$ for some analytic g.
- Chebfun has a very efficient algorithm for convolution of Chebyshev series [Hale \& Townsend 2014]
- Convert Chebyshev to Legendre coefficients with $\mathcal{O}\left(N \log ^{2} N / \log \log N\right)$ complexity
- Use recurrences derived from spherical Bessel functions to convolve with $\mathcal{O}\left((M+N)^{2}\right)$ complexity
- Revert to Chebyshev coefficients
- Significantly cheaper than quadrature with $\mathcal{O}\left((M+N)^{3}\right)$ complexity
- However, the algorithm is not applicable to functions with endpoint singularities
- Challenge comes from Jacobi elliptic integral of the first kind:

$$
\begin{aligned}
\left(\frac{1}{\sqrt{1-x^{2}}} * \frac{1}{\sqrt{1-x^{2}}}\right)(x) & =\Re \frac{2 F\left(\mathrm{i} \sqrt{4-x^{2}} / x, \mathrm{i} x / \sqrt{4-x^{2}}\right)}{\mathrm{i} \sqrt{4-x^{2}}} \\
& \sim \log |8 / x|, \quad \text { as } x \rightarrow 0 .
\end{aligned}
$$

- The trapezoidal rule $\int_{a}^{b} f(x) \mathrm{d} x \approx(b-a)\left[\frac{f(a)+f(b)}{2}\right]$.
- The composite version $T(h)=h \sum_{k=1}^{n-1} \frac{f\left(x_{k-1}\right)+f\left(x_{k}\right)}{2}$, where

$$
h=\frac{b-a}{n} \text { and } x_{k}=a+k h .
$$

- Euler-Maclaurin summation formula:

$$
T(h)-\int_{a}^{b} f(x) \mathrm{d} x \sim \sum_{l=1}^{\infty} h^{2 l} \frac{B_{2 l}}{(2 l)!}\left(f^{(2 l-1)}(b)-f^{(2 l-1)}(a)\right), \quad \text { as } \quad h \rightarrow 0 .
$$

- If f is periodic, or if $f^{(n)}(\cdot) \rightarrow 0$ at endpoints, the convergence is faster than any power of h.
- Variable transformations $\phi: \mathbb{R} \rightarrow(a, b)$ with exponential decay [Stenger 1973] and [Takahasi \& Mori 1974].

Consider the integral:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{-\infty}^{+\infty} f(\phi(t)) \phi^{\prime}(t) \mathrm{d} t
$$

Variable transformations which induce single exponential endpoint decay are:

$$
\begin{aligned}
x & =\phi_{\mathrm{SE}}(t)=\frac{a+b}{2}+\left(\frac{b-a}{2}\right) \tanh (t / 2) \\
\mathrm{d} x & =\phi_{\mathrm{SE}}^{\prime}(t) \mathrm{d} t=\left(\frac{b-a}{4}\right) \operatorname{sech}^{2}(t / 2) \mathrm{d} t
\end{aligned}
$$

Double exponential endpoint decay are:

$$
\begin{aligned}
x & =\phi_{\mathrm{DE}}(t)=\frac{a+b}{2}+\left(\frac{b-a}{2}\right) \tanh \left(\frac{\pi}{2} \sinh t\right) \\
\mathrm{d} x & =\phi_{\mathrm{DE}}^{\prime}(t) \mathrm{d} t=\left(\frac{b-a}{2}\right) \operatorname{sech}^{2}\left(\frac{\pi}{2} \sinh t\right) \frac{\pi}{2} \cosh t \mathrm{~d} t
\end{aligned}
$$

Example [Mori \& Sugihara 2001]:

$$
\int_{0}^{1} x^{-1 / 4} \log (1 / x) \mathrm{d} x=16 / 9
$$

SE transformation

DE transformation

How to determine step size h for composite rule on \mathbb{R} ?

Let d be a positive number and let $\mathscr{D}_{d}=\lim _{\epsilon \rightarrow 0} \mathscr{D}_{d}(\epsilon)$ denote the strip region of width $2 d$ about the real axis:

$$
\mathscr{D}_{d}(\epsilon)=\left\{z \in \mathbb{C}:|\operatorname{Re} z|<\epsilon^{-1}, \quad|\operatorname{Im} z|<d(1-\epsilon)\right\} .
$$

Let $B\left(\mathscr{D}_{d}\right)$ be the family of functions such that:

$$
\mathcal{N}_{1}\left(f, \mathscr{D}_{d}\right)=\lim _{\epsilon \rightarrow 0} \int_{\partial \mathscr{D}_{d}(\epsilon)}|f(z)| \mathrm{d} z<+\infty
$$

Let $\omega(z)$ be a non-vanishing function defined on \mathscr{D}_{d}, and let:
$H^{\infty}\left(\mathscr{D}_{d}, \omega\right)=\left\{f: \mathscr{D}_{d} \rightarrow \mathbb{C} \mid f(z)\right.$ is analytic in \mathscr{D}_{d}, and $\left.\|f\|<+\infty\right\}$,
where the norm is given by:

$$
\|f\|=\sup _{z \in \mathscr{O}_{d}}\left|\frac{f(z)}{\omega(z)}\right| .
$$

Let $\mathscr{E}_{N, h}^{\mathrm{T}}\left(H^{\infty}\left(\mathscr{D}_{d}, \omega\right)\right)$ denote the error norm in $H^{\infty}\left(\mathscr{D}_{d}, \omega\right)$:

$$
\mathscr{E}_{N, h}^{\mathrm{T}}\left(H^{\infty}\left(\mathscr{D}_{d}, \omega\right)\right)=\sup _{\substack{f \in H^{\infty}\left(\mathscr{D}_{d}, \omega\right) \\\|f \mid\| \leq 1}}\left|\int_{-\infty}^{+\infty} f(x) \mathrm{d} x-h \sum_{k=-n}^{+n} f(k h)\right| .
$$

Theorem [Sugihara 1997]

Suppose:
(1) $\omega(z) \in B\left(\mathscr{D}_{d}\right)$;
(2) $\omega(z)$ does not vanish at any point in \mathscr{D}_{d} and takes real values on the real axis;
(3) $\alpha_{1} \exp (-\beta|x|) \leq|\omega(x)| \leq \alpha_{2} \exp (-\beta|x|), \quad x \in \mathbb{R}$, where α_{1}, α_{2}, and $\beta>0$.
Then:

$$
\mathscr{E}_{N, h}^{\mathrm{T}}\left(H^{\infty}\left(\mathscr{D}_{d}, \omega\right)\right) \leq C_{d, \omega} \exp \left(-(\pi d \beta N)^{1 / 2}\right),
$$

where $N=2 n+1$, the mesh size h is chosen optimally as:

$$
h=\sqrt{\frac{2 \pi d}{\beta n}},
$$

and $C_{d, \omega}$ is a constant depending on d and ω.

Theorem [Sugihara 1997]

Suppose:

(1) $\omega(z) \in B\left(\mathscr{D}_{d}\right)$;
(2) $\omega(z)$ does not vanish at any point in \mathscr{D}_{d} and takes real values on the real axis;
(3) $\alpha_{1} \exp \left(-\beta_{1} e^{\gamma|x|}\right) \leq|\omega(x)| \leq \alpha_{2} \exp \left(-\beta_{2} e^{\gamma|x|}\right), \quad x \in \mathbb{R}$, where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma>0$.
Then:

$$
\mathscr{E}_{N, h}^{\mathrm{T}}\left(H^{\infty}\left(\mathscr{D}_{d}, \omega\right)\right) \leq C_{d, \omega} \exp \left(-\frac{\pi d \gamma N}{\log \left(\pi d \gamma N / \beta_{2}\right)}\right),
$$

where $N=2 n+1$, the mesh size h is chosen optimally as:

$$
h=\frac{\log \left(2 \pi d \gamma n / \beta_{2}\right)}{\gamma n}
$$

and $C_{d, \omega}$ is a constant depending on d and ω.

Nonexistence Theorem [Sugihara 1997]

There exists no function $\omega(z)$ that satisfies at once:
(1) $\omega(z) \in B\left(\mathscr{D}_{d}\right)$;
(2) $\omega(z)$ does not vanish at any point in \mathscr{D}_{d} and takes real values on the real axis;
(3) $\omega(x)=\mathcal{O}\left(\exp \left(-\beta e^{\gamma|x|}\right)\right)$ as $|x| \rightarrow \infty$, where $\beta>0$, and $d \gamma>\pi / 2$.

Outcome:

- Optimality of the DE transformation for the trapezoidal rule.

Nonexistence Theorem [Sugihara 1997]

There exists no function $\omega(z)$ that satisfies at once:
(1) $\omega(z) \in B\left(\mathscr{D}_{d}\right)$;
(2) $\omega(z)$ does not vanish at any point in \mathscr{D}_{d} and takes real values on the real axis;
(3) $\omega(x)=\mathcal{O}\left(\exp \left(-\beta e^{\gamma|x|}\right)\right)$ as $|x| \rightarrow \infty$, where $\beta>0$, and $d \gamma>\pi / 2$.

Outcome:

- Optimality of the DE transformation for the trapezoidal rule.
- What happens when complex singularities are present?

Problem [Slevinsky \& Olver 2015]: How can we maximize the convergence rate of the trapezoidal rule:

$$
\int_{-\infty}^{\infty} f(\phi(t)) \phi^{\prime}(t) \mathrm{d} t \approx h \sum_{k=-n}^{+n} f(\phi(k h)) \phi^{\prime}(k h),
$$

despite the singularities of $f \in \mathbb{C}$? Let

$$
\Phi_{\mathrm{ad}}=\left\{\begin{array}{lll}
\phi \quad: \quad & f(\phi(t)) \phi^{\prime}(t) \in H^{\infty}\left(\mathscr{D}_{d}, \omega\right) \text { for some } d>0 \\
& \text { and for some } \omega \text { such that: } \\
\text { 1. } & \omega(z) \in B\left(\mathscr{D}_{d}\right) ; \\
\text { 2. } & \omega(z) \text { does not vanish at any point in } \mathscr{D}_{d} \\
\text { and takes real values on the real axis; }
\end{array}\right\}
$$

Then we wish to find $\phi \in \Phi_{\text {ad }}$ such that the convergence rate is maximized:

$$
\underbrace{\underset{\phi \in \Phi_{\text {ad }}}{\operatorname{argmax}}\left(\frac{\pi d \gamma N}{\log \left(\pi d \gamma N / \beta_{2}\right)}\right)}_{\text {Trapezoidal Convergence Theorem }}
$$

Nonexistence Theorem

Result: an infinite-dimensional optimization problem for ϕ.
Consider the asymptotic problem as $N \rightarrow \infty$:

$$
\begin{aligned}
\frac{\pi d \gamma N}{\log \left(\pi d \gamma N / \beta_{2}\right)} & =\frac{\pi d \gamma N}{\log N+\log \left(\pi d \gamma / \beta_{2}\right)} \\
& \sim \frac{\pi d \gamma N}{\log N}, \quad \text { as } \quad N \rightarrow \infty
\end{aligned}
$$

- We maximize the convergence rate when $d \gamma=\pi / 2$
- Numerical algorithm is the subject of [Slevinsky \& Olver 2015]

Let $\mathbf{c}=\left[c_{1}, c_{2}, \ldots, c_{\lceil N / 2\rceil}\right]^{T}, w(x)=\left(1-x^{2}\right)^{\lambda}$, and x_{i} the $\lceil N / 2\rceil$ nonnegative roots of $T_{N}(x)$. Then:

$$
g\left(\mathbf{c}, x_{i}\right)=\operatorname{conv}\left(\mathbf{c}^{T} T_{0: 2: N} w, \operatorname{conv}\left(\mathbf{c}^{T} T_{0: 2: N} w, \mathbf{c}^{T} T_{0: 2: N} w\right)\right)\left(x_{i}\right)-1
$$

Newton iteration is the most efficient nonlinear solver.
By commutativity and associativity of convolution, we have:

$$
[J(g)]_{i, j}=3 \operatorname{conv}\left(T_{2 j-2} w, \operatorname{conv}\left(\mathbf{c}^{T} T_{0: 2: N} w, \mathbf{c}^{T} T_{0: 2: N} w\right)\right)\left(x_{i}\right)
$$

For each point x_{i}, we pre-compute the inner autoconvolution, and $[J(g)]_{i, j}$ can be computed in the cost of only 2 integrals (parallelogram overlap). By linearity of convolution, g is simply:

$$
g\left(\mathbf{c}, x_{i}\right)=\frac{1}{3} J(g) \mathbf{c}-1
$$

Convolution

Coefficients

Algorithmic complexity scales as $\mathcal{O}\left(n^{2} N^{2}\right)$ where:

- n is the number of quadrature nodes
- N is the number of coefficients
- 101 quadrature nodes and 9 coefficients takes ≈ 0.1 seconds per Newton iteration in double precision

Algorithmic complexity scales as $\mathcal{O}\left(n^{2} N^{2}\right)$ where:

- n is the number of quadrature nodes
- N is the number of coefficients
- 1001 quadrature nodes and 23 coefficients takes ≈ 3 hours per Newton iteration in extended precision
- A simple \& systematic representation is conjectured for the continuous function whose 3 -fold autoconvolution is constant
- Geometric convergence is observed with inverse square root endpoint singularities with $\mathcal{O}\left(n^{2} N^{2}\right)$ complexity
- Previous result [Martin \& O'Bryant 2007]:
$\inf _{f \in C^{0}(-1,1)} \frac{\|f * f * f\|_{\infty}}{\|f\|_{1}} \approx 0.2873 \ldots$
- New result:
$\inf _{f \in C^{0}(-1,1)} \frac{\|f * f * f\|_{\infty}}{\|f\|_{1}} \approx 0.287319803575759796363627713763526 \ldots$
- Is the function simple or can we determine a closed-form for the coefficients?
- The ratio of successive coefficients may offer some insight
- PSLQ may detect a simple representation for the constants

Thank you all very much for your time!

(1) B. Green. Acta Arithmetica, C.4:365-390, 2001.
(2) N. Hale and A. Townsend. SIAM SISC, 36:A1207-A1220, 2014.
(3) G. Martin and K. O'Bryant. Exp. Math., 16:145-165, 2007.
(4) M. Mori and M. Sugihara. J. Comp. Appl. Math., 127:287-296, 2001.
(5) R.M. Slevinsky and S. Olver. to appear in SIAM SISC, 2015.
(6) F. Stenger. J. Inst. Math. Appl., 12:103-114, 1973.
(7) M. Sugihara. Numerische Mathematik, 75:379-395, 1997.
(8) H. Takahasi and M. Mori. RIMS, 9:721-741, 1974.

