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Outline

@ Trapezoidal Rule
@ Review trapezoidal rule
e Introduce variable transformations
o Error analysis
@ Sinc Numerical Methods
o Review Sinc numerical methods
o Error analysis
@ Maximize convergence rates despite nearby complex singularities

o Existence of variable transformations
o Schwarz-Christoffel formula

o Practical alternative

o Locations of singularities unknown

@ Examples & Applications
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Trapezoidal Rule

@ The trapezoidal rule /ab f(x)dx ~ (b—a) {f(a)—i—f(b)]

2
n—1
f(Xk— f b—
@ The composite version T(h) = hz M where h = - 2
k=1

and x, = a+ kh.

b
@ Euler-Maclaurin summation formula T(h) f/ f(x)dx ~
a

Z B! 32/ ( (21— 1)(b)_f(2/_1)(a)), as h—0.

° If f(”)(~) — 0 at endpoints, the convergence is faster than any power of h
[Trefethen and Weidemann 2015].

@ Variable transformations ¢ : R — (a, b) with exponential decay [Stenger
1970] and [Takahasi and Mori 1974].
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Preview of Optimization

Consider the integral for € > 0: /

1 2

) m dx = Etan_l(ﬁ_l).

Variable transformations which induce endpoint decay are:

x = ¢se(t) = tanh(t/2),

Fse(t) = sech’(t/2)/2,

Integrand e = 1
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x = ¢pe(t) = tanh(7/2sinh(t)).
Gpe(t) = sech?(m/2sinh(t))r/2 cosh(t).
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A total failure in the quadrature rules with nearby singularities.

Is there an optimal variable transformation?
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Preview of Optimization

log,, IRelative Errorl
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X = ¢peopt(t) = tanh(tan~!(e) sinh(t)),

<Z)’D,:-Opt(t) = sech2(tan_1(e)sinh(t))tan_l(e)cosh(t).
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Quadrature by Variable Transformation

Let d be a positive number and let 24 denote the strip region of width 2d
about the real axis:
Pq={z€C:|Imz| < d}.

Let w(z) be a non-vanishing function defined on %4, and let:
H®(Dg,w) = {f : D4 — C| f(2) is analytic in Py, and ||f|| < +o0}.
Let &y ,(H>®(Z4,w)) denote the error norm in H>®(Zq4,w):

éa,ah(Hoo(@d,w)) = sup

[Fl1<1

/m F(x)dx — h i F(kh)]

- k=—n

Let B(Z4) be the family of functions f such that:
Nl(f,@d):/ |f(z)] dz < +o0.
024
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Quadrature by Variable Transformation

Theorem [Sugihara 1997] Suppose:
Q w(z) € B(%4);
@ w(z) does not vanish at any point in 9, and takes real values on the real
axis;
Q arexp(—(BIx]")) < lw(x)| < azexp(=(B[x]7)), x€R,
where ay,ap,5 >0 and p > 1.
Then: i
N n(H(Z4,w)) < Caexp (~(ndBN)7T),
where N = 2n + 1, the mesh size h is chosen optimally as:

h = (2nd) 771 (Bn) 71,

and Cy,, is a constant depending on d and w.
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Quadrature by Variable Transformation

Theorem [Sugihara 1997] Suppose:

Q w(z) € B(%4);

@ w(z) does not vanish at any point in 9, and takes real values on the real
axis;

Q@ aiexp (—,Blew‘x‘) < w(x)] < azexp (—Bzeylx‘) , X€R,
where aq, az, 81, 82,7 > 0.

Then: JN
EX L (H®(Dg,w)) < Cyoex <M)
N,h( ( d )) = Lgw €Xp |og(7Td'yN/Bz)

where N = 2n+ 1, the mesh size h is chosen optimally as:

he log(2mdyn/B2)
==

)

and Cy,, is a constant depending on d and w.
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Sinc Numerical Methods

Let us consider the N(= 2n + 1)-point Sinc approximation of a function on
the real line:

+n
)= Y FURSG, M),
where S(j, h)(x) is the so-called Sinc function:
_ sin[r(x/h — j)]
m(x/h=j)

and where the step size h is suitably chosen for a given positive integer n.
Let éﬁjﬁc(H“(@d,w)) denote the error norm in H>*(%4,w):

SVADICY

+n
ENTE(H(Zg,w)) = sup {sup |[F(x)— Y F(ih)S(, h)(x)

If11<1 | xeR =,
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Sinc Numerical Methods

Theorem [Sugihara 2003] Suppose:

Q w(z) € B(%q4);

@ w(z) does not vanish at any point in 9, and takes real values on the real
axis;

Q arexp(—(BIx]")) < lw(x)| < azexp(=(B[x]7)), x€R,
where ay,an,5 >0 and p > 1.

Then:

P
' dBNY 7
S (H(Z4,w)) < Co N7 exp (‘ (W ,f ) p > ,
where N = 2n+ 1, the mesh size h is chosen optimally as:
h = (rd)7 (Bn) 71,

and Cy,, is a constant depending on d and w.
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Sinc Numerical Methods

Theorem [Sugihara 2003] Suppose:

Q w(z) € B(%4);

@ w(z) does not vanish at any point in Z4 and takes real values on the real
axis;

Q ajexp (—ﬂleﬂx‘) < w(x)] < azexp (—Bge"”x‘) , x€eR,
where a1, ay, f1, f2,77 > 0.

Then:

' wdyN
ENRE(H™(Z4,w)) < Cy,0exp <_2|og(7rd77\//(262))> ’

where N = 2n+ 1, the mesh size h is chosen optimally as:

, _ log(mdyn/fs)
yn ’

and Gy, is a constant depending on d and w.
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An Upper Bound

Nonexistence Theorem [Sugihara 1997] There exists no function w(z) that

satisfies at once:

Q w(z) € B(Zq);

@ w(z) does not vanish at any point in 94 and takes real values on the real
axis;

Q w(x) = O (exp(—Be"™)) as |x| — oo, where 3 > 0, and dy > /2.

Conclusion:

@ Based essentially on the celebrated Pragmén-Lindelof principle, Sugihara
excludes utility of further decay.

@ Optimality of the DE transformation for the trapezoidal rule and Sinc
numerical methods.
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Maximizing the Convergence Rates

Problem: How can we maximize the convergence rate of the trapezoidal rule
or the Sinc approximation:

oo +n
/ FO(0)0/ () At~ b S F(6(k h)d (K h),
- k=—n
+n
F(x) = Y (el h)SU, h)(6 (),

j=—n
despite the singularities of f € C? Let

¢ f(p(t))d'(t) € H®(Dy,w) for some d > 0,
and for some w such that:
1. w(z) € B(%q);
b4 = 2. w(z) does not vanish at any point in %y
ad .
and takes real values on the real axis;

3. ajexp <7ﬁ1e7‘xl> < |w(x)] < azexp (732e7‘x‘) R
x € R, where ay, az, 81, 82,7 > 0.
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Maximizing the Convergence Rates

Then we wish to find ¢ € ®,4 such that the convergence rates are

maximized:
dyN
argmax <M> subject to dy < il
pev.q \log(mdyN/p) -2

. Nonexistence Theorem
Trapezoidal Convergence Theorem

argma ( mdy NV
X
sed.q \2log(mdyN/(252))

Sinc Convergence Theorem

) subject to dy <
——

Nonexistence Theorem

NS

Result: an infinite-dimensional optimization problem for ¢.
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Maximizing the Convergence Rates

Consider the asymptotic problems as N — oo:

wdyN B mdyN
log(mrdyN/B2)  log N + log(mdvy/B2)’
wdyN
~ N
og N’ as — 00,
wdyN B wdyN
2log(mdyN/(2f2))  2log N + 2log(mdy/(262))’
wdyN
~ 2log N’ as N — oo.

Then, the linearity of dv leads directly to the following result. We maximize
the convergence rates when dvy = 7/2.
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Maximizing the Convergence Rates

Theorem Let @, oq = {Paq : dy =7/2}. Then for every ¢as € Pag aq such
that:

2N
Enn(H* < Caw = STog(2 N5
nh(H(Zd,w)) < Caexp < 2|og(7r2N/252)> 7

where N = 2n+ 1, the mesh size h is chosen optimally as:

b log(7%n/Bz)
o
and Cqy, is a constant depending on d and w. This same ¢, ensures that:
. 2N
ENP(H™(2, < Cow ——
() = Covo (g oy )
where N = 2n+ 1, the mesh size h is chosen optimally as:
b log(72n/2[3;)

= o ;

and Cy, is a constant depending on d and w.



Practical Application

Interval Single Exponential Double Exponential
[-1,1] tanh(t/2) tanh(Z sinh t)

(—00, 4+00) sinh(t) sinh(5 sinh t)

[0, +00) log(exp(t) + 1) log(exp(7 sinh t) +1)
[0, +00) exp(t) exp(5 smh t)

The four maps can be written as compositions:

Y(z) = tanh(z), 7 1(2)
¥(z) =sinh(z), ¥7(2)
(z) = log(e* +1), ¥\(2) = log(e* — 1),
¥(z) = exp(2) (2)
with the 7 sinh function. Let f have singularities at the points
{0k e}y Let {6x £ic})_; = {1 (0k Tiex) iy
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Schwarz-Christoffel Formula

@ sinh maps Yz — C with two branches at =+i.

@ Let g map the strip Zz to the polygonally bounded region P having
vertices {wy }{_, = {61 +1ié1, ..., O, +i¢,} and interior angles
{max}j_,. Let also Fa4 be the divergence angles at the left and right
ends of the strip Zz. Then the function:

glz)=A+C / el==2)¢ T [sinh(¢ — zi)] ™ d
k=1

where z, = g(wx) and for some A and C maps the interior of the top
half of the strip Zz to the interior of the polygon P.

@ [Hale and Tee 2008] use the Schwarz-Christoffel formula from the unit
circle to maximize convergence rate of Chebyshev methods.
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Practical Alternative

For any real values of the n+ 1 parameters {ux}]_,, the function:
n
h(t) = ugsinh(t) + Z w7t up >0,
j=1

still grows single exponentially. The composition (h(t)) still induces a
double exponential variable transformation.

3
S

maximize ug =

subject to  h(xx + in/2) = S +iék, for k=1,...,n.
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Example: Endpoint and Complex Singularities

dx = —2.04645 . . .,

/1 exp ((€3 + (x — 61)%) 1) log(1 — x)
1 (€ + (x — 52)?)V1+x

for the values d; +ie; = —1/2 41 and 6, +ie; = 1/2 + /2. This integral
has two different endpoint singularities and two pairs of complex conjugate
singularities of different types near the integration axis.

Single Double Optimized Double
#(t) tanh(t/2) tanh (Z sinh(t)) tanh(h(t))
p or vy 1 1 1
B or Ba 1/2 /4 0.06956
d 1.10715 0.34695 /2

The optimized transformation is given by:

h(t) ~ 0.13912sinh(t) + 0.19081 + 0.21938 ¢.
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Example: Endpoint and Complex Singularities

0
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Example: Endpoint and Complex Singularities [§
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Obtaining an Initial Guess

Let € be the smallest of {¢}7_; and & be the by of the same index. Then
the nonlinear program with singularities {0 + i€x}7_; is exactly solved by:

h(t) = Esinht + 6.
A homotopy J#(t) is then constructed between {§ + i¢}7_, at t =0 and
{0k +i&}]_ att=1.
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Singularities Unknown

Definition Let xx = kh be the Sinc points and let f(xx) be the N(=2n+1)
Sinc sampling of f. Then for r + s < 2n, the Sinc-Padé approximants

{r/s}f(x) are given by:

Z pi x
5308
where the r + s + 1 coefficients solve the system:

ZP,Xk—ka qu = f(x),

for k = —|==],..., [5=].

26 of 41

{r/s}e(x) =



Singularities Unknown

Our adaptive algorithm is based on the following principles:

© Sinc-Padé approximants are useful only when the Sinc approximation
obtains some degree of accuracy,

@ Sinc-Padé approximants are useful for r,s = O(log n) as n — oo.

Algorithm

Set n=1;

while |RelativeError| > 1073 do
Double n and naively compute the n'® double exponential
approximation;

end;

while |RelativeError| > € do
Compute the poles of the Sinc-Padé approximant;
Solve the nonlinear program for h(t);
Double n and compute the n** adapted optimized
approximation;

end.
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Adaptive Optimization via Sinc-Padé

x dx

/ VA + = 0)2(S + (x = 22)(G + (x — 83)?)

for the values §; +ie; =141, 6o +1ie; =2 +1/2, and §3 + ie3 = 3+ 1/3.
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Molecular Integrals

@ Many molecular properties are based on the electronic density.

@ Molecular structure = ability to interact with other molecules.

@ Applications in pharmaceutical industry, efficiency of combustion engines.
@ The N atom and n electron Schrodinger equation:

Hy = Evp,

where:
n

includes kinetic energy, nuclear attraction, and electron repulsion.

r,A I’U

@ The Born-Oppenheimer approximation = atoms do not move.

@ The Pauli exclusion principle = Slater determinant for wavefunction.
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Molecular Integrals

Using a LCAO-MO (Rayleigh-Ritz) approach:
oo
\U,':ZCMQO/(, i:1,2,...,n.
k=1
We obtain an infinite system of linear equations, whose generalized

eigenvalues approximate the eigenvalues of the i*" electron’s Hamiltonian:

(p1[Help1)  (p1[Help2) -+ ] [ ci ] [ (p1le1)  (p1lw2) - ]
c

(pa|Help1) (2| Help2) i (p2lp1)  {p2lp2)
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Molecular Integrals

The B functions of [Filter and Steinborn 1978]:

m (<r)l r
Bn,/(Cv F) = m n——((r)\/l (977 ¢F)v

where n, [, and m are the quantum numbers. Linear combination of
Slater-type orbitals with compact Fourier transform.
The three-center nuclear attraction integrals:

no,h,my 1
I"127/12,m12 - / |: ny, Il(Clv 4)] |H_ R | n2 /2(<2,f— RZ)d r,
The four-center two-electron Coulomb integrals:
na,b,mo na,la,ms m = >3 *
‘7"1’/171771,n34,/34~,m34 - / [Bnllh (Cl’ F)Bﬂs /3(<3’ r—= R34)}

1 >3 —
By, (Cay P = Ro1) By, (Gas PYd3Fd37,

F—7 —Ru| ™
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Molecular Integrals

The Fourier transform of the Coulomb operator [Gel'fand and Shilov 1964]:

1 1 /e—iW—S“) &5

F=s 2w J; PP

allows expectations to be written as:

ey e

Then, a generalized convolution:

()] |e(F~ R)) = e % (F(p)

allows us to consider integrals over the Fourier transforms instead. Purpose:
reduction of dimensionality. 3 — 2 for three-center and 6 — 3 for
four-center integrals.
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Molecular Integrals

The bottleneck in the Fourier transform method:

o Ky (a1 /x2 +72) K, (a2 /x2 + 42)
I:/ Ju (B x) " e 27 3wt g
—0o0

Vo a2 s

)

Characteristics: Oscillatory (from J,(-)), Exponentially decaying (from
K.(:)'s), Heavily parameterized, and Singularities arbitrarily close to
integration contour.

Ko (c1y/22 +72) K, (a24/22 +~2)
IT=%R {/ Hl(ll)(ﬁ z) - 1 2 Z"dz 3.
C

V@b

Take z = ((x) as an approximate steepest descent path through the saddle
points:

¢(x) = (atos) A (\/X2+b2+c)7 x € R,

= i
B2+ (a1 + ap)? B? + (a1 + a)?
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Molecular Integrals

Re(log(f(2)))
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Molecular Integrals
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Molecular Integrals

Consider the integral:

Z,

/+o<> ei bZ*El\/ZZ+C12722\/22+C22

(224 )m(22 4 G)me

— 00

for positive real parameter values. To remove oscillations, we deform the
integration contour to a path of steepest descent. We use an asymptotic
path of steepest descent parameterized by:

C(X) = >\1X—|-i (\/)\%X2 +)\§ +)\4> s

for some values of the parameters A. From horizontal and vertical symmetry,

Wwe can use:
h(t) = upsinh(t) + uy t.
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Molecular Integrals

20 runs with randomized values for the parameters distributed uniformly:

) b~ U(0, 20),

ap ~ U(07 1), dp ~ U(O, 1
0,1 0,2), p1~UO0,1),  p~ U(0,1).

CINU(7)7 C2NU(7

of
10 10
H H H
& & &
e -20f e -20f @ -
3 3 3
< < <
3 -30 |- 5 -30 |- 5 =
g g g
40 - 8 -40
-50 L s L L s s -50 L L L L L s _50 L L L L L L
0 20 4 6 8 10 120 0 20 4 6 8 10 120 0 20 40 60 8 10 120
Ordern Ordern Ordern
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Conclusions & Qutlook

@ Conformal maps maximize the convergence rates of trapezoidal rule and
Sinc numerical methods (subject to their very existence!)

@ Practical & general solution as a polynomial adjustment to sinh map

@ Sinc-Padé approximants for unknown singularities

@ Free & open-source implementation available in the JULIA software
package DEQuadrature. jl

Will polynomial adjustments (in the monomial basis) to the sinh map stand

the test of time? There is lots to explore:

@ sinh + polynomial in a Chebyshev basis

@ sinh + rational approximant

@ Potential-theoretic approach to interpolatory nodes and weights on the
whole real line

@ shortest enclosing walks to find optimal contours for Cauchy integrals
[Bornemann and Wechslberger 2012]
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