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November 29, 2018

mailto:Richard.Slevinsky@umanitoba.ca
https://home.cc.umanitoba.ca/~slevinrm/


Spherical Harmonics

Let µ be a positive Borel measure on D ⊂ Rn. The inner product:

〈f , g〉 =

∫
D

f (x)g(x)dµ(x),

induces the norm ‖f ‖2 =
√
〈f , f 〉 and the Hilbert space L2(D, dµ(x)).

Let S2 ⊂ R3 denote the unit 2-sphere and let dΩ = sin θ dθ dϕ.
Then any function f ∈ L2(S2, dΩ) may be expanded in spherical harmonics:

f (θ, ϕ) =
+∞∑
`=0

+∑̀
m=−`

f m` Ym
` (θ, ϕ) =

+∞∑
m=−∞

+∞∑
`=|m|

f m` Ym
` (θ, ϕ),

where the expansion coefficients are:

f m` =
〈Ym
` , f 〉

〈Ym
` ,Y

m
` 〉
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Spherical Harmonics

For ` ∈ N0 and |m| ≤ `, orthonormal spherical harmonics are defined by:

Ym
` (x) = Ym

` (θ, ϕ) =
eimϕ√

2π
(−1)|m|

√
(`+ 1

2 )
(`− |m|)!

(`+ |m|)!
P
|m|
` (cos θ)︸ ︷︷ ︸

P̃
|m|
` (cos θ)

.

Associated Legendre functions are defined by ultraspherical polynomials:

Pm
` (cos θ) = (−2)m( 1

2 )m sinm θC
(m+ 1

2 )

`−m (cos θ).

The notation P̃m
` is used to denote orthonormality, and:

(x)n =
Γ(x + n)

Γ(x)

is the Pochhammer symbol for the rising factorial.
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Spherical Harmonics

Consider the Laplace–Beltrami operator on S2:

∆θ,ϕ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.

For ` ∈ N0 and |m| ≤ `, the surface spherical harmonics are the
eigenfunctions of ∆θ,ϕ:

∆θ,ϕY
m
` (θ, ϕ) = −`(`+ 1)Ym

` (θ, ϕ).
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Spherical Harmonics

Spherical harmonics satisfy many three-term recurrence relations including:

cos θYm
` =

√
(`−m + 1)(`+ m + 1)

(2`+ 1)(2`+ 3)
Ym
`+1 +

√
(`−m)(`+ m)

(2`− 1)(2`+ 1)
Ym
`−1,

sin θeiϕYm
` =

√
(`+ m + 1)(`+ m + 2)

(2`+ 1)(2`+ 3)
Ym+1
`+1 −

√
(`−m − 1)(`−m)

(2`− 1)(2`+ 1)
Ym+1
`−1 .

They also have an addition theorem:

P`(x · y) =
4π

2`+ 1

+∑̀
m=−`

Ym
` (x)Ym

` (y).

Perhaps they have too many properties.
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Synthesis and Analysis

A band-limited function of degree-n on the sphere has no nonzero spherical
harmonic expansion coefficient of degree-n or greater:

fn−1(θ, ϕ) =
n−1∑
`=0

+∑̀
m=−`

f m` Ym
` (θ, ϕ).

For a spherical harmonic Ym
` , ` is the degree and m is the order.

The transforms of synthesis and analysis convert between representations of
a band-limited function in momentum and physical spaces:

Synthesis Sample a band-limited function at a set of points on S2.

Analysis Convert samples on S2 to spherical harmonic expansion
coefficients.

Normally, an appropriate set of points is chosen to be able to perfectly
reconstruct a band-limited function of degree-n.
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Synthesis and Analysis

Point sets include:

Equiangular θk and ϕj are equispaced and their Cartesian product is
taken. These include the celebrated [Driscoll and Healy Jr.,
1994] (2n)(2n − 1) and [McEwen and Wiaux, 2011]
(n − 1)(2n − 1) + 1 sampling theorems.

Gaussian cos θk are Gauss–Legendre points and ϕj are equispaced and
their Cartesian product is taken.

HEALPix procedure to generate points that correspond to a hierarchical
equal area isolatitude pixelization of S2 [Górski et al., 2005].

Random with common distributions (e.g. uniformly distributed on S2).

Data-driven may be treated similar to random.

The näıve cost of synthesis and analysis is O(n4) but it can be trivially
reorganized to O(n3) for isolatitude point sets.
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The Connection Problem

Complementary to synthesis and analysis is the connection problem: the
exact expansion of spherical harmonics in another basis. The sphere is
doubly periodic and supports a bivariate Fourier series.

The (N)FFT solves synthesis and analysis with bivariate Fourier series.

Ym
` (θ, ϕ) =

eimϕ√
2π

P̃m
` (cos θ) ⇒ in longitude, we are done.

The problem is to convert P̃m
` (cos θ) to Fourier series.

Since P̃m
` (cos θ) ∝ sinm θC

(m+ 1
2 )

`−m (cos θ), the intuition is that

even-ordered P̃m
` are trigonometric polynomials in cos θ; and,

odd-ordered P̃m
` are trigonometric polynomials in sin θ.

Conversions are not one-to-one. The connection problem is an analogue
of the McEwen–Wiaux sampling theorem.
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Connection vs. Synth. & Anal.
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Fast Transforms

Fast transforms should:

have an O(n2 logO(1) n) run-time with a similar pre-computation for
synthesis and analysis or the connection problem;

be (backward) stable; and,

be fast in practice.

Algorithms may be classified:

as either exact in exact arithmetic and unstable in floating-point
arithmetic, and numerically stable algorithms in fixed precision that are
approximate to some arbitrarily small tolerance ε;

as either acceleration of synthesis and analysis (>10), or acceleration of
the connection problem (3); or,

by analytical apparatus: split-Legendre functions, WKB approximation,
the fast multipole method (FMM), and the butterfly algorithm.
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The Transformers

Driscoll Healy Mohlenkamp Suda Takami Potts

Steidl Tasche Kunis Rokhlin Tygert Slevinsky
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Split-Legendre Functions

The Driscoll–Healy O(n2 log2 n) transform is created by:

proving the first asymptotically optimal sampling theorem using
(2n)(2n − 1) equiangular samples. This allows inner products to be
represented as discrete sums; if:

Zk,` = 〈f ,TkP`〉,

then they convert Zk,0 = 〈f ,Tk〉, obtained by the discrete cosine
transform (DCT), to Z0,` = 〈f ,P`〉;
using a technology now known as split-Legendre functions, a factorization
of orthogonal polynomial sums evaluated at equiangular points;

performing a sequence of masked and subsampled discrete convolutions;
and,

diagonalizing convolutions by the DCT, and fusing different levels in the
scheme analytically.

8 of 33



Split-Legendre Functions

Driscoll and Healy also provide a rigorous stability analysis, but the bounds
are:

polynomial in the degree,

but exponential in the order, or O(`m),

which explains why the original scheme, even though of foundational
importance, is effectively useless.
Algorithms that are exact in exact arithmetic tend to perform poorly in finite
precision arithmetic. After the Driscoll–Healy paper, there is a divergence in
the literature, where [Potts et al., 1998, Kunis and Potts, 2003, Suda and
Takami, 2002, Healy Jr. et al., 2003] proposed ad hoc remedies to stabilize
the original scheme, and others developed approximate algorithms that
are stable in finite precision arithmetic. The subsequent algorithms are
considered the modern fast transforms.
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WKB Asymptotics

As Sturm–Liouville eigenfunctions, it is well-known that associated Legendre
functions of high degree and order have a large oscillatory interior as a
subset of θ ∈ [0, π].
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WKB Asymptotics

In [Mohlenkamp, 1999], a quasi-classical WKB approximation yields:

√
sin θP̃m

` (cos θ) ≈ exp

i∫ θ

√
(`+ 1

2 )2 −
m2 − 1

4

sin t
dt

 .
Rigorous improvements can be added to the dominant approximation above,
leading to two algorithms for synthesis and analysis with O(n

5
2 log n) and

O(n2 log n) run-times, respectively. Unfortunately, the numerical evidence
does not substantiate the latter compression algorithm.
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The Fast Multipole Method
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The Fast Multipole Method

The numerical method of [Greengard and Rokhlin, 1987] originates from the
multipole expansion of the Coulombic potential:

1

|r − r0|
=

1√
r2 − 2rr0 cos θ + r2

0

=
1

r

∞∑
n=0

( r0
r

)n
Pn(cos θ).

Expansion for sufficiently small r0/r � 1,

⇔ O(log(ε−1)) terms in the multipole expansion for
approximation to precision ε,

⇔ Subblocks well-separated from the main diagonal.

The FMM enables fast approximate matrix-vector products with Cauchy
matrices, generated by sampling 1/(x − y) at all pairwise products of x ∈ Rm

and y ∈ Rn, and other similar kernels, e.g. [Alpert and Rokhlin, 1991].
What does well-separation resemble?
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The Fast Multipole Method

A Cauchy matrix with low-rank subblocks well-separated from the main
diagonal:
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Eigenfunction Transforms

Associated Legendre functions satisfy:

− d

dx

[
(1− x2)

d

dx
P̃m
` (x)

]
+

m2

1− x2
P̃m
` (x) = `(`+ 1)P̃m

` (x).

The key observation of [Rokhlin and Tygert, 2006] is that the differential
equations are structurally similar for |m| > 0.
For m odd, they expand P̃m

` (x) in the basis of P̃1
` (x), and the differential

part of the operator reduces to a diagonal scaling, and multiplication by
(1− x2) is a symmetric pentadiagonal matrix with zeros on the sub- and
super-diagonal, resulting in a symmetric semiseparable inverse with a
chessboard pattern of zeros. Formally:

(D + (m2 − 1)M−1)u = λu.
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Eigenfunction Transforms

The Ritz–Galerkin discretization:

(D + (m2 − 1)M−1)u = λu.

Facts:

The entries of D are `(`+ 1) for ` ≥ |m|;
The entries of

[M−1]`,n =


(n + 3

2 )

√
(`+1)(`+ 3

2 )(`+2)

(n+1)(n+ 3
2 )(n+2)

, for ` ≤ n, `+ n even,

(`+ 3
2 )

√
(n+1)(n+ 3

2 )(n+2)

(`+1)(`+ 3
2 )(`+2)

, for ` > n, `+ n even,

0, otherwise.

The P̃m
` are the smoothest eigenfunctions and have the smallest

eigenvalues.
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Diagonal-plus-Semiseparable D & C

For full analysis, see [Chandrasekaran and Gu, 2004]. Let d , u, v ∈ Rn and:

A = D + S = diag(d) + triu(uv>) + tril(vu>).

If:

d =

(
d1

d2

)
, u =

(
u1

u2

)
, and v =

(
v1

v2

)
,

then:

A =

(
A1

A2

)
+ ww>,

where w =

(
u1

v2

)
, and:

A1 = diag(d1)− diag(u1)2 + triu(u1(v1 − u1)>) + tril((v1 − u1)u>1 ),

A2 = diag(d2)− diag(v2)2 + triu(u2(v2 − u2)>) + tril((v2 − u2)u>2 ).
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Diagonal-plus-Semiseparable D & C

Let A1 = Q1Λ1Q
>
1 and A2 = Q2Λ2Q

>
2 . Then:

A =

(
A1

A2

)
+ ww>,

A =

(
Q1Λ1Q

>
1

Q2Λ2Q
>
2

)
+ ww>,

=

(
Q1

Q2

)[(
Λ1

Λ2

)
+

(
Q1

Q2

)>
ww>

(
Q1

Q2

)](
Q1

Q2

)>
,

=

(
Q1

Q2

)[
∆ + zz>

](Q1

Q2

)>
,

where ∆ = diag(Λ1,Λ2) and z =

(
Q1

Q2

)>
w . The conquer step relates

the two subproblems to the larger one via a symmetric
diagonal-plus-rank-one eigendecomposition that can be accelerated by the
FMM [Gu and Eisenstat, 1995].

12 of 33



Diagonal-plus-Semiseparable D & C

Lemma (Gu and Eisenstat [1995])

Assume that δ1 < δ2 < · · · < δn and that zj > 0. Then the eigenvalues
{λi}ni=1 of ∆ + zz> interlace the diagonal entries:

δ1 < λ1 < δ2 < λ2 < · · · < δn < λn,

and are the roots of the secular equation:

f (λ) = 1 +
n∑

j=1

z2
j

δj − λ
= 0.

For each eigenvalue λi , the corresponding eigenvector is:

qi =

(
z1

δ1 − λi
, · · · , zn

δn − λi

)>/√√√√ n∑
j=1

z2
j

(δj − λi )2
.
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Eigenfunction Transforms, II

Associated Legendre functions have the symmetric Jacobi matrix:

J =


0 βm

1

βm
1 0 βm

2

. . .
. . .

. . .

βm
n−2 0 βm

n−1

βm
n−1 0

 ,

where:

βm
` =

√
`(`+ 2m)

(2`+ 2m − 1)(2`+ 2m + 1)
.

If J = QΛQ>, the eigenvalues of J are the roots of the P̃m
n+m(x) and the

orthonormal eigenvectors are proportional to the associated Legendre
functions evaluate at these roots.
Thus, the eigenvectors Q implement synthesis and their transpose
implement analysis at the roots of P̃m

n+m(x).
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Eigenfunction Transforms, II

But how is synthesis and analysis at a distinct point sets for every order
related to a global spherical synthesis and analysis?

According to [Tygert, 2008], the key to using the Jacobi matrix is
post-processing by the Christoffel–Darboux formula, or equivalently the
second barycentric formula.

The discrete eigenfunctions of the Jacobi matrix are P̃m
`+m(xk), where xk

are the corresponding Gauss–Jacobi quadrature nodes.

By the barycentric formula and the connection between Gaussian and
barycentric weights:

pn(x) =
n∑

k=0

λk fk
x − xk

/
n∑

k=0

λk
x − xk

,

full spherical harmonic synthesis and analysis may be performed at a
common Cartesian product point set, accelerated by the FMM.
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Tridiagonal D & C

Let the symmetric tridiagonal matrix T be partitioned as:

T =

T1 a
a> c b>

b T2

 ,

Then if T1 = Q1Λ1Q
>
1 and T2 = Q2Λ2Q

>
2 , we have the similarity

transformation to a symmetric arrowhead matrix:Q1

1
Q2

>T1 a
a> c b>

b T2

Q1

1
Q2

 =

 Λ1 Q>1 a
Λ2 Q>2 b

a>Q1 b>Q2 c

 .

The symmetric arrowhead spectral decomposition can also be accelerated by
the FMM because the eigenvectors are a (normalized) Cauchy matrix of the
arrowhead data. This is analyzed by [Gu and Eisenstat, 1994].
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Tridiagonal D & C

Lemma (Gu and Eisenstat [1994])

Assume that a1 < a2 < · · · < an−1 and that bj > 0. Then the eigenvalues

{λi}ni=1 of

(
diag(a) b
b> c

)
, interlace the diagonal entries:

λ1 < a1 < λ2 < a2 < · · · < an−1 < λn,

and are the roots of the secular equation:

f (λ) = λ− c +
n−1∑
i=1

b2
i

ai − λ
= 0.

For each eigenvalue λi , the corresponding eigenvector is:

qi =

(
b1

λi − a1
, · · · , bn−1

λi − an−1
, 1

)>/√√√√1 +
n−1∑
j=1

b2
j

(λi − aj)2
.
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Summary

Eigenfunction transforms:

X Accelerate synthesis and analysis or the connection problem
to O(n2 log n);

X Require O(n2 log n) pre-computation, but absurdly large in
practice;

∼ Are stable, but the error is proportional to the 2-norms of the
Sturm–Liouville operators, which we know scale as O(n2);

? Are fast in practice; and,

× Have low memory footprint.
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The Butterfly Algorithm

Unsatisfied with FMM-accelerated eigentransforms, [Tygert, 2010] develops
new accelerated synthesis and analysis based on the butterfly algorithm,
originating in [Michielssen and Boag, 1996] and studied as an analytical
apparatus [O’Neil et al., 2010].

Purpose: Abstract the algebra of the FFT.

Technique: Divide-and-conquer ⇔ merge-and-split.

Technology: The interpolative decomposition [Liberty et al., 2007].

Proof: Fourier integral operators have rank-proportional-to-area.

The ranks of operator compositions are bounded by the smallest rank in the
composition, extending applicability beyond Fourier integral operators.
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The Interpolative Decomposition

Lemma
Let A ∈ Rm×n. For any k , there exist ACS ∈ Rm×k whose columns are a
unique subset of the columns of A and AI ∈ Rk×n such that:

1 some subset of the columns of AI makes up the k × k identity matrix;

2 ‖vec(AI)‖∞ ≤ 1;

3 the spectral norm of AI satisfies ‖AI‖2 ≤
√
k(n − k) + 1;

4 the least singular value of AI is at least 1;

5 ACSAI = A whenever k = m or k = n; and,

6 when k < min{m, n}, the spectral norm of A− ACSAI satisfies:

‖A− ACSAI‖2 ≤
√
k(n − k) + 1σk+1.

where σk+1 is the k + 1st singular value of A.

We say that A ≈ ACSAI and any structure in A is also in ACS.
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The Butterfly Algorithm

Step 1: Partition A ∈ Rn×n into thin strips. Compute IDs of each subblock.

≈
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The Butterfly Algorithm

Step 2 (a): Merge the strips and split them approximately in half.

≈

18 of 33



The Butterfly Algorithm

Step 2 (b): Compute IDs of each subblock.

≈
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The Butterfly Algorithm

Step 3 (a): Again, merge the strips and split them approximately in half.

≈
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The Butterfly Algorithm

Step 3 (b): Compute IDs of each subblock.

≈
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The Butterfly Algorithm

Step 4 (a): Final step, merge the strips and split them approximately in half.

≈
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The Butterfly Algorithm

Step 4 (b): Final step, compute IDs of each subblock.

≈
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The Butterfly Algorithm

Let A ∈ Rn×n have rank-proportional-to-area.

Every time we merge-and-split, the complexity of a matrix-vector product
is approximately halved.

We have created a permuted and sparse block-diagonal factorization.

Costs O(kavgn
2) to compute the factorization and O(kavgn log n) for a

matrix-vector product, where kavg is the average rank of all IDs.

To synthesize and analyze associated Legendre functions of all orders
requires O(kavgn

3) flops to pre-compute and O(kavgn
2 log n) to apply.
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Summary

The butterfly algorithm:

X Accelerates synthesis and analysis to O(n2 log n);

× Requires O(n3) pre-computation;

X Is stable, with errors in proportion to the tolerances in the
interpolative decompositions;

? Is fast in practice; and,

× Has low memory footprint.

Tygert’s last algorithm is widely used by practitioners
including [Seljebotn, 2012] and [Wedi et al., 2013].

But why does it work?

And how can we decrease the memory requirements? For n = 8, 192
Wavemoth requires 212GiB to store the butterfly factorizations. For
n ≈ 130, 000, the pre-computations are estimated to occupy 45TiB.
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Spherical Harmonics to Fourier

. .
. ...

P̃0
`

P̃1
`

P̃2
`

P̃3
`

P̃`−1
`

P̃`
`

...
...

P̃0
`

P̃1
`

P̃0
`

P̃1
`

P̃0
`

P̃1
`

...
...

T`

sin θU`

T`

sin θU`

T`

sin θU`

=⇒ =⇒

1 Convert high-order layers to layers of order 0 and 1 in O(kavgn
2 log n)

flops and O(kavgn
2 log n) storage; and,

2 Convert low-order layers to Fourier series in O(n2 log n) flops and
O(n log n) storage à la Fast Multipole Method.
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The SH Connection Problem

Definition

Let {φn(x)}n≥0 be a family of orthogonal functions with respect to

L2(D̃, dµ̃(x)); and,

let {ψn(x)}n≥0 be another family of orthogonal functions with respect to
L2(D, dµ(x)).

The connection coefficients:

c`,n =
〈ψ`, φn〉dµ
〈ψ`, ψ`〉dµ

,

allow for the expansion:

φn(x) =
∞∑
`=0

c`,nψ`(x).
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The SH Connection Problem

Theorem
Let {φn(x)}n≥0 and {ψn(x)}n≥0 be two families of orthonormal functions
with respect to L2(D, dµ(x)). Then the connection coefficients satisfy:

∞∑
`=0

c`,mc`,n = δm,n.

Any matrix A ∈ Rm×n, m ≥ n, with orthonormal columns is
well-conditioned and Moore–Penrose pseudo-invertible A+ = A>.

For every m, the P̃m
` (x) are a family of orthonormal functions for the

same Hilbert space L2([−1, 1], dx).
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The SH Connection Problem

Definition
Let Gn denote the Givens rotation:

Gn =



1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · cn 0 sn · · · 0
0 · · · 0 1 0 · · · 0
0 · · · −sn 0 cn · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 0 · · · 1


,

where the sines and the cosines are in the intersections of the nth and
n + 2nd rows and columns, embedded in the identity of a conformable size.
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The SH Connection Problem

Theorem (Slevinsky [2017a])
The connection coefficients between P̃m+2

n+m+2(cos θ) and P̃m
`+m(cos θ) are:

cm`,n =


(2` + 2m + 1)(2m + 2)

√
(` + 2m)!

(` + m + 1
2 )`!

(n + m + 5
2 )n!

(n + 2m + 4)!
, for ` ≤ n, ` + n even,

−

√
(n + 1)(n + 2)

(n + 2m + 3)(n + 2m + 4)
, for ` = n + 2,

0, otherwise.

Furthermore, the matrix of connection coefficients

C (m) = G
(m)
0 G

(m)
1 · · ·G (m)

n−1G
(m)
n I(n+3)×(n+1), where the sines and cosines are:

smn =

√
(n + 1)(n + 2)

(n + 2m + 3)(n + 2m + 4)
, and cmn =

√
(2m + 2)(2n + 2m + 5)

(n + 2m + 3)(n + 2m + 4)
.
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The SH Connection Problem

“Proof.” W.l.o.g., consider m = 0 and n = 5.

C (0) =



0.91287 0.0 0.31623 0.0 0.17593 0.0
0.0 0.83666 0.0 0.39641 0.0 0.24398

−0.40825 0.0 0.70711 0.0 0.3934 0.0
0.0 −0.54772 0.0 0.60553 0.0 0.37268
0.0 0.0 −0.63246 0.0 0.5278 0.0
0.0 0.0 0.0 −0.69007 0.0 0.46718
0.0 0.0 0.0 0.0 −0.73193 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” Apply the Givens rotation G
(0)>
0 :

G
(0)>
0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.83666 0.0 0.39641 0.0 0.24398
0.0 0.0 0.7746 0.0 0.43095 0.0
0.0 −0.54772 0.0 0.60553 0.0 0.37268
0.0 0.0 −0.63246 0.0 0.5278 0.0
0.0 0.0 0.0 −0.69007 0.0 0.46718
0.0 0.0 0.0 0.0 −0.73193 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” And again:

G
(0)>
1 G

(0)>
0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.7746 0.0 0.43095 0.0
0.0 0.0 0.0 0.72375 0.0 0.44544
0.0 0.0 −0.63246 0.0 0.5278 0.0
0.0 0.0 0.0 −0.69007 0.0 0.46718
0.0 0.0 0.0 0.0 −0.73193 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” And again:

G
(0)>
2 G

(0)>
1 G

(0)>
0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.72375 0.0 0.44544
0.0 0.0 0.0 0.0 0.68139 0.0
0.0 0.0 0.0 −0.69007 0.0 0.46718
0.0 0.0 0.0 0.0 −0.73193 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” And again:

G
(0)>
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(0)>
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0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.68139 0.0
0.0 0.0 0.0 0.0 0.0 0.6455
0.0 0.0 0.0 0.0 −0.73193 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” And again:

G
(0)>
4 G

(0)>
3 G

(0)>
2 G

(0)>
1 G

(0)>
0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.6455
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −0.76376
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The SH Connection Problem

“Proof.” And finally:

G
(0)>
5 G

(0)>
4 G

(0)>
3 G

(0)>
2 G

(0)>
1 G

(0)>
0 C (0) =



1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
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The SH Connection Problem

“Proof.” Schematically:

C (m)

=

�� �� ��

�� �� ��

. . .

G
(m)
0 · · ·G (m)

n

I

Conversion between neighbouring layers is O(n) flops and storage.

The Givens rotations are computed to high relative accuracy due to
analytical expressions of sines and cosines ⇒ backward stable.
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Skeletonizing the Pre-Computation

Skeletonizing the pre-computation makes it practical for a laptop.
Neighbouring layers are converted via Given rotations.

`

m

n

︸︷︷︸
O(ka

vg
)
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Proof That Butter Flies

For m ∈ N, the connection coefficients between P̃2m
`+2m and P̃0

n are given by
the inner product:

c2m
`,n =

∫ 1

−1

P̃2m
`+2m(x)P̃0

n (x)dx .

Using the Fourier transform of P̃0
n :

c2m
`,n =

(−i)n
√
n + 1

2

π

∫
R
jn(k)dk

∫ 1

−1

eikx P̃2m
`+2m(x)dx .

The matrix of connection coefficients is an operator composition with the
variables (n× k)× (k × x)× (x × `). The Fourier integral operator is special.
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Proof That Butter Flies

Theorem (Slevinsky [2017a])

Let:

k1(n, ε) := 2

(
ε

2

√
π

2n + 1
(n + 1)Γ(n + 3

2 )

) 1
n+1

,

and let:

k2(`,m, n, ε) :=
1

8

(
2

ε

√
2n + 1

π

√
(2`+ 4m + 1)Γ(`+ 4m + 1)

Γ(`+ 1)

1

mΓ(m + 1
2 )

) 1
m

.

Then only integration over k1(n, ε) ≤ |k | ≤ k2(`,m, n, ε) contributes to:

c2m
`,n =

(−i)n
√
n + 1

2

π

∫
R
jn(k)dk

∫ 1

−1

eikx P̃2m
`+2m(x)dx .

to precision ε > 0.
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Summary

The butterfly algorithm applied to the connection problem:

X Requires an O(n2 log2 n) run-time;

× Requires O(n3 log n) pre-computation but only 10× more
expensive than run-time in practice;

X Is (backward) stable, with error scaling as O(
√
nε) for the

slow transform and O(nε) for the fast transform;

? Is fast in practice; and,

X Has low memory footprint.
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Eigenfunction Transforms, III

Associated Legendre functions also satisfy:

−(1− x2)
d

dx

[
(1− x2)

d

dx
P̃m
` (x)

]
+ m2P̃m

` (x) = `(`+ 1)(1− x2)P̃m
` (x).

Expanding P̃µ` (x) in the basis of P̃m
` (x) (for µ−m even), we find formally:

(MD + (µ2 −m2)I)u = λMu.

For large µ and m, the entries of M−1 are still semiseparable but prone to
severe (factorial) scaling. This rules out the diagonal-plus-semiseparable
eigensolvers, but how can we reintroduce symmetry?
The key observation of [Slevinsky, 2017b] is that multiplication by 1− x2 is
a symmetric positive-definite operator and thus has a Cholesky factorization
M = R>R. Letting u = R>v and multiplying from the left by R−>, we
arrive at:

(RDR> + (µ2 −m2)I)v = λRR>v .
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Eigenfunction Transforms, III

Facts about (RDR> + (µ2 −m2)I)v = λRR>v :

The entries of D are `(`+ 1) for ` ≥ |m|;
The Cholesky factor R is:

R =


cm1 0 dm

1

. . .
. . .

. . .

cmn−2 0 dm
n−2

cmn−1 0
cmn

 ,

where:

cm` =

√
(`+ 2m)(`+ 2m + 1)

(2`+ 2m − 1)(2`+ 2m + 1)
, and dm

` = −

√
`(`+ 1)

(2`+ 2m + 1)(2`+ 2m + 3)
.

Symmetric-definite tridiagonal D & C is proposed by [Borges and Gragg,
1993].
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Eigenfunction Transforms, III

This symmetric-definite banded generalized eigenvalue problem:

allows for use of arrowhead divide-and-conquer algorithms to allow
O(n log n) application of the connection problem; and,

allows for the pre-computation to be recursively subdivided and reduced
from a total cost of O(n2 log n) down to O(n

3
2 log n), which is

superoptimal, based on O(log
√
n) levels in the following schematic.

0 nn
2

n
4

3n
4

n
8

3n
8

5n
8

7n
8

n
16

3n
16

5n
16

7n
16

9n
16

11n
16

13n
16

15n
16

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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The Story So Far

A great thrust has been made to create asymptotically fast spherical
harmonic transforms that are practical. Are they faster than the fastest
slow methods of [Schaeffer, 2013, Reinecke and Seljebotn, 2013, Ishioka,
2018]? Not yet.

All technologies are all similar in spirit: they divide and conquer in the
presence of oscillations on harmonic polynomials that are separable
Sturm–Liouville eigenfunctions of ∆ with well-separated spectra.

Is there a backward stable method? Yes [Slevinsky, 2017a].

Is there a pre-computation-free method? Yes [Slevinsky, 2017b].

Is there free and open source software? Yes,
including FastTransforms.jl in Julia (experimental quality) and
FastTransforms in C (production quality).

Many of the technological apparatuses have analogues for other 2D
harmonic polynomials: on the disk [Zernike, 1934], triangle [Proriol,
1957], rectangle, deltoid, wedge, etc. . . , as well as spin-weighted
spherical harmonics, allowing for a unified framework.
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