A fast and well-conditioned spectral method for singular integral equations

Richard Mikael Slevinsky ${ }^{\dagger}$ and Sheehan Olver ${ }^{\ddagger}$

${ }^{\dagger}$ Mathematical Institute, University of Oxford
${ }^{\ddagger}$ School of Mathematics and Statistics, The University of Sydney

ICIAM 2015, Beijing

August 11, 2015

Outline

- Singular integral equations:

$$
f_{\Gamma} K(x, y) u(y) \mathrm{d} y=f(x), \quad \mathcal{B} u=\mathbf{c}
$$

Classical collocation method [Elliott 1982], hybrid quadrature rules [Alpert 1999], etc,....

- Classical applications
- Boundary integral equations for Laplace \& Helmholtz equations
- Fracture mechanics
- Contemporary applications
- Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equation via inverse scattering transform
- Random matrix theory and orthogonal polynomials by reformulating as a matrix-valued Riemann-Hilbert problem.
- New combination of three key ingredients:
- use a basis in which singularities are integrated exactly
- The basis allows for banded linear algebra
- and low rank bivariate approximants for integral kernels

2D Elliptic PDEs

In this work, we will consider:

- the Laplace equation:

$$
-\Delta u(\mathbf{x})=0, \quad \Phi(\mathbf{x}, \mathbf{y})=\frac{1}{2 \pi} \log |\mathbf{x}-\mathbf{y}|
$$

- the Helmholtz equation:

$$
-\left(\Delta+k^{2}\right) u(\mathbf{x})=0, \quad \Phi(\mathbf{x}, \mathbf{y})=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|\mathbf{x}-\mathbf{y}|)
$$

- the gravity Helmholtz equation:

$$
\begin{aligned}
&-\left(\Delta+E+x_{2}\right) u(\mathbf{x})=0 \\
& \Phi(\mathbf{x}, \mathbf{y})=\frac{1}{4 \pi} \int_{0}^{\infty} \operatorname{exp~i}\left[\frac{|\mathbf{x}-\mathbf{y}|^{2}}{4 t}+\left(E+\frac{x_{2}+y_{2}}{2}\right) t-\frac{1}{12} t^{3}\right] \frac{\mathrm{d} t}{t}
\end{aligned}
$$

where the fundamental solution is derived in [Bracher et al 1998]. Numerical evaluation via the trapezoidal rule [Trefethen and Weideman 2014] on path of steepest descent. Timings of $10^{5} / \mathrm{s}$ are reported in 3 of 22 Barnett et al. 2014].

Exterior Scattering Problems

Theorem [Vekua 1967] where for analytic coefficients of an elliptic PDO (accomplished with Riemann function):

$$
\Phi(\mathbf{x}, \mathbf{y})=A(\mathbf{x}, \mathbf{y}) \log |\mathbf{x}-\mathbf{y}|+B(\mathbf{x}, \mathbf{y}), \quad \text { where } \quad A(\mathbf{x}, \mathbf{x})=-(2 \pi)^{-1} .
$$

For any continuous density [Kress 2010] u, let \mathcal{S}_{Γ} and \mathcal{D}_{Γ} define the singleand double-layer potentials:

$$
\begin{aligned}
& \mathcal{S}_{\Gamma} u(\mathbf{x})=\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) \mathrm{d} \Gamma(\mathbf{y}), \quad \text { for } \quad \mathbf{x} \in D, \\
& \mathcal{D}_{\Gamma} u(\mathbf{x})=\int_{\Gamma} \frac{\partial \Phi(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{y})} u(\mathbf{y}) \mathrm{d} \Gamma(\mathbf{y}), \quad \text { for } \quad \mathbf{x} \in D .
\end{aligned}
$$

For homogeneous equations $\mathbf{L}[u]=0$, Green's representation theorem allows for the determination of the exterior solutions given data on the boundary Γ :

$$
u(\mathbf{x})=-\mathcal{S}_{\Gamma}[\partial u / \partial n](\mathbf{x})+\mathcal{D}_{\Gamma}[u](\mathbf{x}), \quad \text { for } \quad \mathbf{x} \in D
$$

Dirichlet Problem

Definition (Dirichlet Problem, Kress 2010)

Given $u^{i}(\mathbf{x}) \in C^{2}\left(\mathbb{R}^{2}\right)$ satisfying $\mathrm{L}\left[u^{i}\right]=0$, find $u^{s}(\mathbf{x}) \in C^{2}(D) \cap C^{0, \alpha}(\Gamma)$ satisfying $\mathrm{L}\left[u^{5}\right]=0$ and the radiation condition at infinity, and:

$$
u^{i}(\mathbf{x})+u^{s}(\mathbf{x})=0, \quad \text { for } \quad \mathbf{x} \in \Gamma
$$

Theorem (Dirichlet Solution, Kress 2010)
The scattered solution to the Dirichlet problem is represented everywhere by the single-layer potential. The density $[\partial u / \partial n]$ satisfies:

$$
\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y})\left[\frac{\partial u}{\partial n}\right] \mathrm{d} \Gamma(\mathbf{y})=u^{i}(\mathbf{x}), \quad \mathbf{x} \in \Gamma .
$$

Practical approximation theory: Chebyshev polynomials

- Chebyshev polynomials:

$$
T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right), \quad \text { for } \quad n \in \mathbb{N}_{0}, \quad \text { and } \quad x \in[-1,1]
$$

- Interpolants: $p_{N}(x)=\sum_{n=0}^{N} c_{n} T_{n}(x), \quad x \in[-1,1]$,
- Interpolation condition:

$$
p_{N}\left(x_{n}\right)=f\left(x_{n}\right) \quad \text { where } \quad x_{n}=\cos \left(\frac{2 n+1}{2 N+2} \pi\right), \quad \text { for } \quad n=0, \ldots, N
$$

- Clenshaw's algorithm for $\mathcal{O}(n)$ evaluation of interpolants,
- DCT for $\mathcal{O}(n \log n)$ transformation of the interpolation condition into approximate projections,
- Convergence depends on regularity.

Ultraspherical spectral method

The ultraspherical spectral method of [Olver and Townsend 2013] represents solutions of linear ordinary differential equations of the form:

$$
\mathcal{L} u=f, \quad \mathcal{B} u=c
$$

where \mathcal{L} is a linear operator of the form:

$$
\mathcal{L}=a_{N}(x) \frac{\mathrm{d}^{N}}{\mathrm{~d} x^{N}}+\cdots+a_{1}(x) \frac{\mathrm{d}}{\mathrm{~d} x}+a_{0}(x)
$$

and \mathcal{B} contains N linear functionals satisfied by $u(x)$ in Chebyshev expansions:

$$
u(x)=\sum_{n=0}^{\infty} u_{n} T_{n}(x)
$$

where $T_{n}(x)$ is the Chebyshev polynomial of the first kind of degree n, and $\mathbf{u}=\left(u_{0}, u_{1}, \ldots\right)^{\top}$ is a vector of coefficients. Three ingredients we need are:
Differentiation
Conversion
Multiplication

Differentiation

- Differentiation is banded if we change bases:

$$
\frac{\mathrm{d}^{\lambda} T_{n}(x)}{\mathrm{d} x^{\lambda}}=\left\{\begin{array}{cc}
0, & 0 \leq n \leq \lambda-1, \\
2^{\lambda-1}(\lambda-1)!n C_{n-\lambda}^{(\lambda)}(x), & n \geq \lambda,
\end{array}\right.
$$

where $C_{n}^{(\lambda)}$ represents the ultraspherical polynomial of integral order λ and of degree n.

- This sparse differentiation has the operator representation:

$$
\mathcal{D}_{\lambda}=2^{\lambda-1}(\lambda-1)!\left(\begin{array}{llllll}
\overbrace{0}^{\lambda \text { times }} & \cdots & 0 & & & \\
\\
& & & \lambda+1 & & \\
& & & \lambda+2 & \\
& & & & & \ddots
\end{array}\right)
$$

mapping T_{n} to $C_{n}^{(\lambda)}$.

Conversion \& Multiplication

- Conversion from T_{n} to $C_{n}^{(1)}$ and from $C_{n}^{(\lambda)}$ to $C_{n}^{(\lambda+1)}$ is banded:

$$
\mathcal{S}_{0}=\left(\begin{array}{ccccc}
1 & 0 & -\frac{1}{2} & & \\
& \frac{1}{2} & 0 & -\frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right), \quad \mathcal{S}_{\lambda}=\left(\begin{array}{ccccc}
1 & 0 & -\frac{\lambda}{\lambda+2} & & \\
& \frac{\lambda}{\lambda+1} & 0 & -\frac{\lambda}{\lambda+3} & \\
& & \frac{\lambda}{\lambda+2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right) .
$$

- Multiplication is banded:

$$
\mathcal{M}_{0}[a]=\frac{1}{2}\left[\left(\begin{array}{cccc}
2 a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & 2 a_{0} & a_{1} & \ddots \\
a_{2} & a_{1} & 2 a_{0} & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & . \\
\vdots & . \cdot & . & .
\end{array}\right)\right] .
$$

Using the recurrence relation for the ultraspherical polynomials, multiplication operators are built in higher order bases as needed.

Ultraspherical spectral method: Example

We solve $\epsilon\left(\epsilon+x^{2}\right) u^{\prime \prime}(x)=x u(x), u(-1)=1, u(1)=0$ in as little as ~ 0.0057 s in Chebfun or ApproxFun.jl.

Left: the structure of the system. Right: a plot of the solution for $\epsilon=10^{-4}$. In this case, a Chebyshev expansion of degree 3,276 is required to approximate the solution to double precision.

Singular integral equations

Consider the SIE:

$$
\begin{aligned}
& \frac{1}{\pi} f_{-1}^{1}\left(\frac{K_{1}(x, y)}{(y-x)^{2}}+\frac{K_{2}(x, y)}{y-x}\right. \\
& \left.\quad+\log |y-x| K_{3}(x, y)+K_{4}(x, y)\right) u(y) \mathrm{d} y=f(x)
\end{aligned}
$$

- where K_{1}, K_{2}, K_{3} and K_{4} are continuous bivariate kernels,
- f is a known continuous function,
- and integration is interpreted by the Cauchy principal value or Hadamard finite-part.
For the ultraspherical spectral method, we require singular integral operators and bivariate kernels.

Hilbert transform

- We have the finite Hilbert transform [King 2009]:

$$
\mathcal{H}_{(-1,1)}\left[\frac{T_{n}(x)}{\sqrt{1-x^{2}}}\right]=\left\{\begin{array}{cc}
0, & n=0, \\
C_{n-1}^{(1)}(x), & n \geq 1,
\end{array}\right.
$$

- Integrating with respect to x, we obtain the log transform:

$$
\mathcal{L}_{(-1,1)}\left[\frac{T_{n}(x)}{\sqrt{1-x^{2}}}\right]=\left\{\begin{array}{cc}
-\log 2, & n=0, \\
-\frac{T_{n}(x)}{n}, & n \geq 1,
\end{array}\right.
$$

- Differentiating:

$$
\mathcal{H}_{(-1,1)}^{\prime}\left[\frac{T_{n}(x)}{\sqrt{1-x^{2}}}\right]=\left\{\begin{array}{cc}
0, & n=0,1, \\
C_{n-2}^{(2)}(x), & n \geq 2,
\end{array}\right.
$$

- Integration (divided by π):

$$
\Sigma_{(-1,1)}\left[\frac{T_{n}(x)}{\sqrt{1-x^{2}}}\right]= \begin{cases}1, & n=0 \\ 0, & n \geq 1\end{cases}
$$

2D: Tensor and SVD

- In 2D, we scale with $\mathcal{O}(m n)$ function samples and $\mathcal{O}(\min (m n \log n, n m \log m))$ arithmetic via fast 2D transforms.
- Consider the function $f \in C\left([-1,1]^{2}\right)$, then the two dimensional interpolant takes the form:

$$
p_{m, n}(x, y)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{i, j} T_{i}(x) T_{j}(y)
$$

- Using the SVD: $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}$, we reveal the rank of \mathbf{A} :

$$
p_{\mathrm{SVD}}(x, y)=\sum_{i=1}^{k} \sigma_{i} u_{i}(x) v_{i}^{*}(y)
$$

where σ_{i} are the singular values, and $u_{i}(x)$ and $v_{i}^{*}(y)$ are univariate approximations and \mathbf{A} the optimal rank- k approximant in $L^{2}\left([-1,1]^{2}\right)$.

- Can we get a low rank form without computing the 2D matrix of coefficients or the SVD?

2D: Continuous GE [Townsend and Trefethen 2013]

- Given $f(x, y) \in C\left([-1,1]^{2}\right)$ and a tol, we find f_{k} such that $\left\|f-f_{k}\right\|<$ tol.
- Set $e_{0}(x, y)=f(x, y), f_{0}(x, y)=0, k=0$. while $\left|e_{k}\left(x_{k}, y_{k}\right)\right|=\max \left(\left|e_{k}(x, y)\right|\right)>$ tol

$$
\begin{aligned}
& e_{k+1}(x, y)=e_{k}(x, y)-\frac{e_{k}\left(x_{k}, y\right) e_{k}\left(x, y_{k}\right)}{e_{k}\left(x_{k}, y_{k}\right)} \\
& f_{k+1}(x, y)=f_{k}(x, y)+\frac{e_{k}\left(x_{k}, y\right) e_{k}\left(x, y_{k}\right)}{e_{k}\left(x_{k}, y_{k}\right)} \\
& k=k+1
\end{aligned}
$$

end
Result: $p_{\mathrm{GE}}(x, y)=\sum_{i=1}^{k} A_{i}(x) B_{i}(y)$,

- Scales with a search over $\mathcal{O}(m n)$ function samples and $\mathcal{O}(k(m \log m+n \log n))$ arithmetic via fast one-dimensional transforms.

SingularIntegralEquations.jl

Low rank approximations are separable models:

$$
K_{\lambda}(x, y)=\sum_{i=1}^{k_{\lambda}} A_{\lambda, i}(x) B_{\lambda, i}(y), \quad \text { for } \quad \lambda=1,2,3,4
$$

then:

$$
\begin{array}{ll}
\mathcal{H}_{(-1,1)}^{\prime}\left[K_{1}\right]=\sum_{i=1}^{k_{1}} \mathcal{M}_{2}\left[A_{1, i}(x)\right] \mathcal{H}_{(-1,1)}^{\prime} \mathcal{M}_{0}\left[B_{1, i}(y)\right], & \mathcal{H}_{(-1,1)}\left[K_{2}\right]=\sum_{i=1}^{k_{2}} \mathcal{M}_{1}\left[A_{2, i}(x)\right] \mathcal{H}_{(-1,1)} \mathcal{M}_{0}\left[B_{2, i}(y)\right] \\
\mathcal{L}_{(-1,1)}\left[K_{3}\right]=\sum_{i=1}^{k_{3}} \mathcal{M}_{0}\left[A_{3, i}(x)\right] \mathcal{L}_{(-1,1)} \mathcal{M}_{0}\left[B_{3, i}(y)\right], & \Sigma_{(-1,1)}\left[K_{4}\right]=\sum_{i=1}^{K_{4}} \mathcal{M}_{0}\left[A_{4, i}(x)\right] \Sigma_{(-1,1)} \mathcal{M}_{0}\left[B_{4, i}(y)\right],
\end{array}
$$

and ultimately:

$$
\left(\mathcal{H}_{(-1,1)}^{\prime}\left[K_{1}\right]+\mathcal{S}_{1} \mathcal{H}_{(-1,1)}\left[K_{2}\right]+\mathcal{S}_{1} \mathcal{S}_{0}\left(\mathcal{L}_{(-1,1)}\left[K_{3}\right]+\Sigma_{(-1,1)}\left[K_{4}\right]\right)\right) \mathbf{u}=\mathcal{S}_{1} \mathcal{S}_{0} \mathbf{f} .
$$

- Affine maps from $(-1,1)$ to (a, b) allow general intervals in \mathbb{C}.
- Union of disjoint intervals by interlacing operators \& coefficients.

Applications: the Faraday cage

- Consider n infinitesimally thin plates located at the n roots of unity [Chapman, Hewett and Trefethen 2015]. We seek to find the solution to the Laplace equation such that:

$$
\begin{array}{lr}
u(\mathbf{x})=u_{0} & \text { for } \quad \mathbf{x} \in D \\
u(\mathbf{x})=\log \left|\mathbf{x}-\mathbf{x}_{0}\right|+\mathcal{O}(1), & \text { as } \\
u\left(\mathbf{x}-\mathbf{x}_{0} \mid \rightarrow 0\right. \\
u(\mathbf{x})=\log |\mathbf{x}|+o(1), & \text { as } \quad|\mathbf{x}| \rightarrow \infty
\end{array}
$$

- We can split the solution $u=u^{i}+u^{s}$ as in a scattering problem, where:

$$
u^{i}(\mathbf{x})=\log |\mathbf{x}-(2,0)|,
$$

is the source term with strength 2π located at $(2,0)$.

- Dirichlet boundary conditions on Γ. We augment our system with the zero sum condition on the total charge:

$$
\int_{\Gamma}\left[\frac{\partial u(\mathbf{y})}{\partial n}\right] \mathrm{d} \Gamma(\mathbf{y})=0
$$

and the unknown constant u_{0} to accommodate this condition.

Applications: the Faraday cage

Left: a plot of the solution $u(\mathbf{x})$ with 10 normal plates with radial parameter $r=10^{-1}$. Right: a plot of the solution $u(\mathbf{x})$ with 40 tangential plates with the same radial parameter.

Applications: acoustic scattering

Acoustic scattering with Neumann boundary conditions from an incident wave with $k=50$ and $\mathbf{d}=(1 / \sqrt{2},-1 / \sqrt{2})$.

Applications: acoustic scattering

Acoustic scattering with Neumann boundary conditions from an incident wave with $k=50$ and $\mathbf{d}=(1 / \sqrt{2},-1 / \sqrt{2})$.

Applications: gravity Helmholtz

Scattering in a linearly stratified medium $-\left(\Delta+E+x_{2}\right) u(\mathbf{x})=0$.

- Fourier transform from time-energy \Rightarrow an interpretation as the Schrödinger equation with linear potential
- Models quantum particles of fixed energy in a uniform gravitational field [Barnett et al. 2014]
- Classical Hamiltonian \Rightarrow rays are parabolic instead of linear
- Every point in the "classically allowed" region is illuminated twice

Applications: gravity Helmholtz

In the figure $E=20$ and source located at $(0,-5)$.

Diagonal preconditioner for compactness

The space $\ell_{\lambda}^{2} \subset \mathbb{C}^{\infty}$ is defined as the Banach space with norm:

$$
\|\mathbf{u}\|_{\ell_{\lambda}^{2}}=\sqrt{\sum_{k=0}^{\infty}\left|u_{k}\right|^{2}(k+1)^{2 \lambda}}<\infty .
$$

Lemma
If $\Phi=A(\mathbf{x}, \mathbf{y}) \log |\mathbf{x}-\mathbf{y}|+B(\mathbf{x}, \mathbf{y})$ and if:

$$
\mathcal{R}=\left(\begin{array}{cccc}
\frac{1}{2 \log 2} & & & \\
& 2 & & \\
& & 4 & \\
& & & \ddots
\end{array}\right): \ell_{\lambda}^{2} \rightarrow \ell_{\lambda-1}^{2}
$$

then:

$$
\left(\mathcal{L}_{(-1,1)}[\pi A]+\Sigma_{(-1,1)}[\pi B]\right) \mathcal{R}=I+\mathcal{K},
$$

w_{20} wher $22 \mathcal{K}: \ell_{\lambda}^{2} \rightarrow \ell_{\lambda}^{2}$ is compact for $\lambda=1,2, \ldots$.

Diagonal preconditioner for compactness

Fast Chebyshev multiplication + banded operators $=$ fast operator-function products \Rightarrow continuous Krylov methods.

Conclusion \& Outlook

- SingularIntegralEquations.jl is an open-source framework for solving singular integral equations. It requires open-source ApproxFun.jl and is written in free \& open-source JULIA.
- Fractal screens have a non-trivial solution to the Dirichlet problem, but a zero-solution for the Neumann problem. No Numerical results! Approach: symmetrized Woodbury matrix identity \& Schur complement to hierarchically assemble and annihilate off-diagonal low rank compact operators.
- Polynomially mapped domains can be treated via the spectral mapping theorem.
- Fundamental solution is known for Helmholtz equation with a parabolic refractive index. Models Gaussian beams in optical fibres.
- Special thanks to Lloyd Nick Trefethen, Dave Hewett, and the Chebfun team for stimulating discussions

Thank you all very much for your time!

References

(1) C. Bracher, W. Becker, S. A. Gurvitz, M. Kleber, and M. S. Marinov. Am. J. Phys., 66:38-48, 1998.
(2) L. N. Trefethen and J. A. C. Weideman. SIAM Rev., 56:385-458, 2014.
(3) A. H. Barnett, B. J. Nelson, and J. M. Mahoney. arXiv:1409.7423, 2014.
(4) I. N. Vekua. New methods for solving elliptic equations, North Holland, 1967.
(5) Z. Battles and L. N. Trefethen. SIAM J. Sci. Comput., 25:1743-1770, 2004.
(6) A. Townsend and L. N. Trefethen. SIAM J. Sci. Comput., 35:C495-C518, 2013.
(7) S. Olver and A. Townsend. SIAM Rev., 55:462-489, 2013.
(8) F. W. King. Hilbert Transforms. Cambridge University Press, 2009.
(9) D. P. Hewett, S. Langdon, and S. N. Chandler-Wilde. arXiv:1401.2786, 2014.
(10) S. J. Chapman, D. P. Hewett, and L. N. Trefethen. to appear in SIAM Rev., 2015.

