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Outline

Singular integral equations:

−
∫

Γ

K (x , y)u(y)dy = f (x), Bu = c,

Classical collocation method [Elliott 1982], hybrid quadrature rules
[Alpert 1999], etc,. . . .
Classical applications

Boundary integral equations for Laplace & Helmholtz equations
Fracture mechanics

Contemporary applications
Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equation via
inverse scattering transform
Random matrix theory and orthogonal polynomials by reformulating as a
matrix-valued Riemann–Hilbert problem.

New combination of three key ingredients:
use a basis in which singularities are integrated exactly
The basis allows for banded linear algebra
and low rank bivariate approximants for integral kernels
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2D Elliptic PDEs

In this work, we will consider:
the Laplace equation:

−∆u(x) = 0, Φ(x, y) =
1

2π
log |x− y|,

the Helmholtz equation:

−(∆ + k2)u(x) = 0, Φ(x, y) =
i

4
H

(1)
0 (k|x− y|) ,

the gravity Helmholtz equation:

− (∆ + E + x2)u(x) = 0,

Φ(x, y) =
1

4π

∫ ∞
0

exp i

[
|x− y|2

4t
+

(
E +

x2 + y2

2

)
t − 1

12
t3

]
dt

t
,

where the fundamental solution is derived in [Bracher et al 1998].
Numerical evaluation via the trapezoidal rule [Trefethen and Weideman
2014] on path of steepest descent. Timings of 105/s are reported in
[Barnett et al. 2014].
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Exterior Scattering Problems

Theorem [Vekua 1967] where for analytic coefficients of an elliptic PDO
(accomplished with Riemann function):

Φ(x, y) = A(x, y) log |x− y|+ B(x, y), where A(x, x) = −(2π)−1.

For any continuous density [Kress 2010] u, let SΓ and DΓ define the single-
and double-layer potentials:

SΓu(x) =

∫
Γ

Φ(x, y)u(y)dΓ(y), for x ∈ D,

DΓu(x) =

∫
Γ

∂Φ(x, y)

∂n(y)
u(y)dΓ(y), for x ∈ D.

For homogeneous equations L[u] = 0, Green’s representation theorem allows
for the determination of the exterior solutions given data on the boundary Γ:

u(x) = −SΓ [∂u/∂n] (x) +DΓ [u] (x), for x ∈ D.
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Dirichlet Problem

Definition (Dirichlet Problem, Kress 2010)

Given ui (x) ∈ C 2(R2) satisfying L[ui ] = 0, find us(x) ∈ C 2(D) ∩ C 0,α(Γ)
satisfying L[us ] = 0 and the radiation condition at infinity, and:

ui (x) + us(x) = 0, for x ∈ Γ.

Theorem (Dirichlet Solution, Kress 2010)

The scattered solution to the Dirichlet problem is represented everywhere by
the single-layer potential. The density [∂u/∂n] satisfies:∫

Γ

Φ(x, y)

[
∂u

∂n

]
dΓ(y) = ui (x), x ∈ Γ.
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Practical approximation theory: Chebyshev
polynomials

Chebyshev polynomials:

Tn(x) = cos(n cos−1(x)), for n ∈ N0, and x ∈ [−1, 1].

Interpolants: pN(x) =
N∑

n=0

cnTn(x), x ∈ [−1, 1],

Interpolation condition:

pN(xn) = f (xn) where xn = cos

(
2n + 1

2N + 2
π

)
, for n = 0, . . . ,N.

Clenshaw’s algorithm for O(n) evaluation of interpolants,

DCT for O(n log n) transformation of the interpolation condition into
approximate projections,

Convergence depends on regularity.
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Ultraspherical spectral method

The ultraspherical spectral method of [Olver and Townsend 2013] represents
solutions of linear ordinary differential equations of the form:

Lu = f , Bu = c ,

where L is a linear operator of the form:

L = aN(x)
dN

dxN
+ · · ·+ a1(x)

d

dx
+ a0(x),

and B contains N linear functionals satisfied by u(x) in Chebyshev
expansions:

u(x) =
∞∑
n=0

unTn(x),

where Tn(x) is the Chebyshev polynomial of the first kind of degree n, and
u = (u0, u1, . . .)

> is a vector of coefficients. Three ingredients we need are:

Differentiation Conversion Multiplication
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Differentiation

Differentiation is banded if we change bases:

dλTn(x)

dxλ
=

{
0, 0 ≤ n ≤ λ− 1,

2λ−1(λ− 1)! n C
(λ)
n−λ(x), n ≥ λ,

where C
(λ)
n represents the ultraspherical polynomial of integral order λ

and of degree n.

This sparse differentiation has the operator representation:

Dλ = 2λ−1(λ− 1)!


λ times︷ ︸︸ ︷

0 · · · 0 λ
λ+ 1

λ+ 2
. . .

 ,

mapping Tn to C
(λ)
n .
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Conversion & Multiplication

Conversion from Tn to C
(1)
n and from C

(λ)
n to C

(λ+1)
n is banded:

S0 =


1 0 − 1

2
1
2

0 − 1
2

1
2

0
. . .

. . .
. . .

 , Sλ =


1 0 − λ

λ+2
λ
λ+1

0 − λ
λ+3

λ
λ+2

0
. . .

. . .
. . .

 .

Multiplication is banded:

M0[a] =
1

2




2a0 a1 a2 · · ·

a1 2a0 a1
. . .

a2 a1 2a0
. . .

...
. . .

. . .
. . .

+


0 0 0 · · ·
a1 a2 a3 · · ·

a2 a3 a4 . .
.

... . .
.

. .
.

. .
.


 .

Using the recurrence relation for the ultraspherical polynomials,
multiplication operators are built in higher order bases as needed.

9 of 22



Ultraspherical spectral method: Example

We solve ε(ε+ x2)u′′(x) = x u(x), u(−1) = 1, u(1) = 0 in as little as
∼ 0.0057 s in Chebfun or ApproxFun.jl.
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j

0

20

40

60

80

100

i

1.0 0.5 0.0 0.5 1.0
x

0.5

0.0

0.5

1.0

u
(x

)

Left: the structure of the system. Right: a plot of the solution for ε = 10−4.
In this case, a Chebyshev expansion of degree 3,276 is required to
approximate the solution to double precision.
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Singular integral equations

Consider the SIE:

1

π
=

∫ 1

−1

(
K1(x , y)

(y − x)2
+

K2(x , y)

y − x

+ log |y − x |K3(x , y) + K4(x , y)) u(y)dy = f (x),

where K1, K2, K3 and K4 are continuous bivariate kernels,

f is a known continuous function,

and integration is interpreted by the Cauchy principal value or Hadamard
finite-part.

For the ultraspherical spectral method, we require singular integral
operators and bivariate kernels.
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Hilbert transform

We have the finite Hilbert transform [King 2009]:

H(−1,1)

[
Tn(x)√
1− x2

]
=

{
0, n = 0,

C
(1)
n−1(x), n ≥ 1,

Integrating with respect to x , we obtain the log transform:

L(−1,1)

[
Tn(x)√
1− x2

]
=

{ − log 2, n = 0,

−Tn(x)

n
, n ≥ 1,

Differentiating:

H′(−1,1)

[
Tn(x)√
1− x2

]
=

{
0, n = 0, 1,

C
(2)
n−2(x), n ≥ 2,

Integration (divided by π):

Σ(−1,1)

[
Tn(x)√
1− x2

]
=

{
1, n = 0,
0, n ≥ 1.
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2D: Tensor and SVD

In 2D, we scale with O(mn) function samples and
O(min(mn log n, nm logm)) arithmetic via fast 2D transforms.

Consider the function f ∈ C ([−1, 1]2), then the two dimensional
interpolant takes the form:

pm,n(x , y) =
m−1∑
i=0

n−1∑
j=0

Ai,jTi (x)Tj(y).

Using the SVD: A = UΣV∗, we reveal the rank of A:

pSVD(x , y) =
k∑

i=1

σiui (x)v∗i (y),

where σi are the singular values, and ui (x) and v∗i (y) are univariate
approximations and A the optimal rank-k approximant in L2([−1, 1]2).

Can we get a low rank form without computing the 2D matrix of
coefficients or the SVD?
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2D: Continuous GE [Townsend and Trefethen
2013]

Given f (x , y) ∈ C ([−1, 1]2) and a tol, we find fk such that
‖f − fk‖ < tol.

Set e0(x , y) = f (x , y), f0(x , y) = 0, k = 0.
while |ek(xk , yk)| = max(|ek(x , y)|) > tol

ek+1(x , y) = ek(x , y)− ek(xk , y)ek(x , yk)

ek(xk , yk)

fk+1(x , y) = fk(x , y) +
ek(xk , y)ek(x , yk)

ek(xk , yk)
k = k + 1

end

Result: pGE(x , y) =
k∑

i=1

Ai (x)Bi (y),

Scales with a search over O(mn) function samples and
O(k (m logm + n log n)) arithmetic via fast one-dimensional transforms.
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SingularIntegralEquations.jl
Low rank approximations are separable models:

Kλ(x , y) =

kλ∑
i=1

Aλ,i (x)Bλ,i (y), for λ = 1, 2, 3, 4,

then:

H′(−1,1)[K1] =

k1∑
i=1

M2[A1,i (x)]H′(−1,1)M0[B1,i (y)], H(−1,1)[K2] =

k2∑
i=1

M1[A2,i (x)]H(−1,1)M0[B2,i (y)],

L(−1,1)[K3] =

k3∑
i=1

M0[A3,i (x)]L(−1,1)M0[B3,i (y)], Σ(−1,1)[K4] =

k4∑
i=1

M0[A4,i (x)]Σ(−1,1)M0[B4,i (y)],

and ultimately:(
H′(−1,1)[K1] + S1H(−1,1)[K2] + S1S0(L(−1,1)[K3] + Σ(−1,1)[K4])

)
u = S1S0f.

Affine maps from (−1, 1) to (a, b) allow general intervals in C.

Union of disjoint intervals by interlacing operators & coefficients.
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Applications: the Faraday cage

Consider n infinitesimally thin plates located at the n roots of unity
[Chapman, Hewett and Trefethen 2015]. We seek to find the solution to
the Laplace equation such that:

u(x) = u0 for x ∈ D,
u(x) = log |x− x0|+O(1), as |x− x0| → 0,
u(x) = log |x|+ o(1), as |x| → ∞.

We can split the solution u = ui + us as in a scattering problem, where:

ui (x) = log |x− (2, 0)|,

is the source term with strength 2π located at (2, 0).
Dirichlet boundary conditions on Γ. We augment our system with the
zero sum condition on the total charge:∫

Γ

[
∂u(y)

∂n

]
dΓ(y) = 0,

and the unknown constant u0 to accommodate this condition.
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Applications: the Faraday cage
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Left: a plot of the solution u(x) with 10 normal plates with radial parameter
r = 10−1. Right: a plot of the solution u(x) with 40 tangential plates with
the same radial parameter.
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Applications: acoustic scattering

Acoustic scattering with Neumann boundary conditions from an incident
wave with k = 50 and d = (1/

√
2,−1/

√
2).
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Applications: acoustic scattering
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Acoustic scattering with Neumann boundary conditions from an incident
wave with k = 50 and d = (1/

√
2,−1/

√
2).
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Applications: gravity Helmholtz

Scattering in a linearly stratified medium −(∆ + E + x2)u(x) = 0.

Fourier transform from time-energy ⇒ an interpretation as the
Schrödinger equation with linear potential

Models quantum particles of fixed energy in a uniform gravitational field
[Barnett et al. 2014]

Classical Hamiltonian ⇒ rays are parabolic instead of linear

Every point in the “classically allowed” region is illuminated twice

19 of 22



Applications: gravity Helmholtz

In the figure E = 20 and source located at (0,−5).
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Diagonal preconditioner for compactness

The space `2
λ ⊂ C∞ is defined as the Banach space with norm:

‖u‖`2
λ

=

√√√√ ∞∑
k=0

|uk |2(k + 1)2λ <∞.

Lemma
If Φ = A(x, y) log |x− y|+ B(x, y) and if:

R =


1

2 log 2

2
4

. . .

 : `2
λ → `2

λ−1,

then: (
L(−1,1)[πA] + Σ(−1,1)[πB]

)
R = I +K,

where K : `2
λ → `2

λ is compact for λ = 1, 2, . . ..
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Diagonal preconditioner for compactness
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Fast Chebyshev multiplication + banded operators = fast operator-function
products ⇒ continuous Krylov methods.
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Conclusion & Outlook

SingularIntegralEquations.jl is an open-source framework for
solving singular integral equations. It requires open-source
ApproxFun.jl and is written in free & open-source Julia.

Fractal screens have a non-trivial solution to the Dirichlet problem, but a
zero-solution for the Neumann problem. No Numerical results! Approach:
symmetrized Woodbury matrix identity & Schur complement to
hierarchically assemble and annihilate off-diagonal low rank compact
operators.

Polynomially mapped domains can be treated via the spectral mapping
theorem.

Fundamental solution is known for Helmholtz equation with a parabolic
refractive index. Models Gaussian beams in optical fibres.

Special thanks to Lloyd Nick Trefethen, Dave Hewett, and the Chebfun
team for stimulating discussions

Thank you all very much for your time!
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