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Spherical Harmonics

Let p be a positive Borel measure on D C R". The inner product:

mazém%www,

induces the norm ||f||, = \/(f, ) and the Hilbert space L?(D, du(x)).

Let S? C R? denote the unit 2-sphere and let dQ = sin 6 df de.
Then any function f € L2(S?, dQ2) may be expanded in spherical harmonics:

+oo  +£ too oo
SN EYPO.0) = Y > fY(0,¢),
=0 m=—¢ m=—00 {=|m|

where the expansion coefficients are:
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Spherical Harmonics

Spherical harmonics are defined by:

imp _ |
ym(0,0) = S gmilml o )Y E=M o ooy reNy, —t<m<t
V4 P \/ﬂ 2 (£+m)| 4 ) )
~;"(cos@)

Associated Legendre functions are defined by ultraspherical polynomials:
pm _ mq1 - m (m+3)
" (cos0) = (=2)"(5)msin™ 0C,_, > (cosh).
The notation Isé" is used to denote orthonormality, and:

_ [(x+n)
(X)n = W

is the Pochhammer symbol for the rising factorial.
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Spherical Harmonics

Consider the Laplace—Beltrami operator on S%:

AL Lo 0y, 1 &
99 = sinbh 00 90) " sin2h 0p?’

For £ € Ny and |m| < ¢, the surface spherical harmonics are the
eigenfunctions of Ay .:

AQ,ga Yﬁm(ea QD) = —é(f + 1)Yfm(97 99)

Spherical harmonics diagonalize the Laplace—Beltrami operator.
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Real-(World) Applications

@ Global Numerical Weather Prediction (NWP). Global climate models at
the European Centre for Medium-Range Weather Forecasts use spherical
harmonics to represent the world’s climate with a horizontal resolution of
approximately 10 km, corresponding to roughly 64 million degrees of
freedom.

@ Analysis of the Planck experiment. The European Space Agency sent the
PLANCK satellite in orbit in 2013 to collect cosmic background radiation
in an attempt to observe the first light of the universe. High resolution
data are analyzed by spherical harmonics.

@ Time-dependent Schrodinger equation in angular coordinates:

S (e _
W (e) = (T+9(0) W), V() = Vo).
models polarization effects.
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@ Many real-world applications may be abstracted to semi-linear PDEs:
up = Lu+ N(u,t), u(ty) = up.

where L is a linear (differential) operator, and A/ is not.
@ Usually, £ = A or something similar and A (u, t) = u?, for example.
@ Higher-order derivatives in time are reformulated as a system.
@ Many algorithms exist for semi-linear time-stepping:

o Operator splitting preserves unitarity;

o Exponential integrating integrates the stiff linear term exactly; and,
o Implicit-explicit schemes are designed for versatility & efficiency.

@ Problem: L is localized in momentum (coefficient) space and N is
localized in physical (value) space.
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Problem

Fast transforms are required to convert between representations in
momentum and physical spaces:

Synthesis Convert an expansion in spherical harmonics to function
values on the sphere.
Analysis Convert function values on the sphere to spherical harmonic
expansion coefficients.
For a band-limit of ¢ < n, the naive cost is O(n*) but it can be trivially
reorganized to O(n®). The goal is a run-time of O(n?log®® n).
This has a rich history, including works by Driscoll and Healy, Mohlenhamp,
Suda and Takami, Kunis and Potts, Rokhlin and Tygert and Tygert.
Questions about current approaches:
@ Which grids should be chosen? If tensor-product grids, should they be
Gaussian or equispaced-in-angle?

@ Is the method numerically stable? Important for time evolution.
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Solution: Change the Problem

The sphere is doubly periodic and supports a bivariate Fourier series.
@ The FFT, DCT, and DST solve synthesis and analysis.

@ Nonuniform variants extend this to arbitrary grids.
eimgo .
@ Y/(0,p) = ——P]"(cosf) = in longitude, we are done.

V2r

@ The problem is to convert /545"(cos 0) to Fourier series.
e Since PJ"(cosf) o sin™ HCéT;%)(cos 0),

o even-ordered P} are trigonometric polynomials in cos8; and,
o odd-ordered P/ are trigonometric polynomials in sin 6.

@ Conversions are not one-to-one.
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The SH Connection Problem

Definition

o Let {¢,(x)}n>0 be a family of orthogonal functions with respect to
L2(D, djfi(x)); and,

o let {¢n(x)}n>0 be another family of orthogonal functions with respect to
L2(D, dp(x)).

The connection coefficients:

Con = <¢Zv¢n>du
o (e, Yeda
allow for the expansion:
¢n(X) ~ Z CE,nwé(X)-
£=0
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The SH Connection Problem

Theorem

Let {¢n(x)}n>0 and {¢n(x)}n>0 be two families of orthonormal functions
with respect to L?(D, du(x)). Then the connection coefficients satisfy:

0
§ Ct,mCt,n = 5m,n-
(=0

@ Any matrix A € R™*" 'm > n, with orthonormal columns is
well-conditioned and Moore—Penrose pseudo-invertible AT = AT

e For every m, the P(x) are a family of orthonormal functions for the
same Hilbert space L2([—1,1], dx).
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The SH Connection Problem

Definition
Let G, denote the Givens rotation:

i - 0 0 0 --- 0
0 ¢, 0 s, 0

G,= |0 0 1 0 0},
0 —s, 0 ¢, 0
o -~ 0 0 0 - 1]

where the sines and the cosines are in the intersections of the n'® and

n+ 2" rows and columns, embedded in the identity of a conformable size.
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The SH Connection Problem

Theorem - .
H i~ m+ m .
The connection coefficients between P\~ ,(cos®) and P[  (cos®) are:
(£+2m)! (n+m+ 3)n!
20+ 2m +1)(2m + 2 . for £<n, ¢ :
(20 +2m+1)(2m+ )\/(Z+m+%)Z! remia)’ or <n + n even,
=
2,n B (n+1)(n+2) ’ for t—niol
(n+2m+3)(n+2m + 4)
0, otherwise.

Furthermore, the matrix of connection coefficients
cm = g{mgim...glmgtm) lin+2)xn, Where the sines and cosines are:

o (n+1)(n+2) and <" — (2m+2)(2n+2m +5)
"\ (n+2m+3)(n+2m +4)’ "V (n4+2m+3)(n+2m+4)
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“Proof.” W.l.o.g., consider m =0 and n=6.
0.91287 0.0 0.31623 0.0 0.17593 0.0
0.0 0.83666 0.0 0.39641 0.0 0.24398
-0.40825 0.0 0.70711 0.0 0.3934 0.0
o _ 0.0  —054772 0.0 0.60553 0.0 0.37268
0.0 0.0  —063246 0.0 0.5278 0.0
0.0 0.0 0.0  —0.69007 0.0 0.46718
0.0 0.0 0.0 00  —073193 0.0
0.0 0.0 0.0 0.0 00  —0.76376
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The SH Connection Problem or MANITOBA
“Proof.” Apply the Givens rotation GéO)T:
10 0.0 0.0 0.0 0.0 0.0
0.0 0.83666 0.0 0.39641 0.0 0.24398
00 00 0.7746 0.0 0.43095 0.0
COT ) _ |00 054772 0.0 0.60553 0.0 0.37268
0 oo 00  —063246 00 0.5278 0.0
00 00 00  —0.69007 0.0 0.46718
00 00 0.0 00  -073193 0.0
00 00 0.0 0.0 00  —0.76376
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The SH Connection Problem or MANITOBA
“Proof.” And again:

1.0 00 0.0 0.0 0.0 0.0

00 1.0 0.0 0.0 0.0 0.0

00 0.0 07746 0.0 0.43005 0.0
COT O @ _ [00 00 00 0.72375 0.0 0.44544
1 % 00 00 —0.63246 0.0 0.5278 0.0

00 00 00  —069007 0.0 0.46718

00 00 00 00  —073193 0.0

00 00 00 0.0 00  —0.76376
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The SH Connection Problem or MANITOBA
“Proof.” And again:
1.0 00 00 00 0.0 0.0
00 1.0 00 00 0.0 0.0
00 00 1.0 00 0.0 0.0
GO GO GOT (0 _ | 00 00 00 072375 0.0 0.44544
00 00 00 00 0.68139 0.0
00 0.0 00 —0.69007 0.0 0.46718
00 00 00 00  -073193 0.0
00 00 00 00 00  —0.76376
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The SH Connection Problem or MANITOBA
“Proof.” And again:
1.0 00 00 00 0.0 0.0
00 1.0 00 00 00 0.0
00 00 1.0 00 00 0.0
OT ~0)T ~(0)T ~(0)T ~0y _ | 0.0 0.0 0.0 1.0 0.0 0.0
G37 G G G CU =100 00 00 00 068139 0.0
00 00 00 00 00 0.6455
00 00 00 00 —073193 00
00 00 00 00 00  —0.76376
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The SH Connection Problem

“Proof.” And again:

1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 00 1.0 0.0 0.0 0.0
(0)T ~(0)T ~(0)T ~(0)T ~(0)T ~0y) _ | 0.0 0.0 0.0 1.0 0.0 0.0
Ga7 G37 Gy G G c® = 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.6455
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 —0.76376
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The SH Connection Problem

“Proof.” And finally:

1.0 0.0 0.0 0.0 0.0 0.0
00 1.0 0.0 0.0 0.0 0.0
00 00 1.0 0.0 0.0 0.0
0)T ~(0)T ~(0)T ~(0)T ~(0)T ~(0)T 0.0 0.0 0.0 1.0 0.0 0.0
6" 60 6" 60 6" 67 O = 00 00 0.0 00 1.0 0.0
00 00 0.0 00 00 1.0
00 0.0 0.0 00 0.0 0.0
00 0.0 0.0 00 0.0 0.0
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“Proof.” Schematically:

EKE,
.'EK[;

&6

@ Conversion between neighbouring layers is O(n) flops and storage.

@ The Givens rotations are computed to high relative accuracy due to
analytical expressions of sines and cosines = backward stable.
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Spherical Harmonics to Fourier

. P — P sin 0Uj
Hl—1 PO
— P, P Te
—_— P = Pl = singU,
—_— P2 PY T
—_ . P! —_—— B! sin 60U,
PO 0]
P? Py T,

@ Convert high-order layers to layers of order 0 and 1 in O(n?) flops and
O(n?) storage; and,

@ Convert low-order layers to Fourier series in O(n? log n) flops and
O(nlog n) storage a la Fast Multipole Method.

To make an algorithm fast, we usually need to make approximations.
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To convert high-order layers to layers of order 0 and 1 in O(n? log? n) flops,
we need something more.

For m € N, the connection coefficients between P27, and P9 are given by
the inner product:

m = / B2, (x)P2(x) dx.

Using the Fourier transform of PY:

CZn

= - W/ / lkx"%+2m( ) dx.

The matrix of connection coefficients is an operator composition with the
variables (n x k) x (k x x) x (x x ). The Fourier integral operator is special.
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The Butterfly Algorithm

Purpose: Abstract the algebra of the FFT.
Technique: Divide-and-conquer < merge-and-split.
Technology: The interpolative decomposition.

Proof: Fourier integral operators have rank-proportional-to-area.

The ranks of operator compositions are bounded by the smallest rank in the
composition, extending applicability beyond Fourier integral operators.
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The Interpolative Decomposition

Lemma
Let A€ R™*". For any k, there exist Acs € R™** whose columns are a
unique subset of the columns of A and Ay € R¥*" such that:

© some subset of the columns of Ay makes up the k x k identity matrix;
Q [jvec(Al)[ = 1,

© the spectral norm of A; satisfies || A1, < \/k(n—k)+1;

© the least singular value of Ay is at least 1;

Q@ AcsAr = A whenever k = m or k = n; and,

@ when k < min{m, n}, the spectral norm of A — AcgAi satisfies:

HA — AcsA1||2 S \ k(n — k) + 10k+1~

where o1 is the k + 1% singular value of A.

We say that A ~ AcsAr and any structure in A is also in Acs.
11 of 21
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The Butterfly Algorithm

Step 1: Partition A € R"*" into thin strips. Compute IDs of each subblock.
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The Butterfly Algorithm

Step 2 (a): Merge the strips and split them approximately in half.
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The Butterfly Algorithm

Step 2 (b): Compute IDs of each subblock.
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The Butterfly Algorithm

Step 3 (a): Again, merge the strips and split them approximately in half.
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The Butterfly Algorithm

Step 3 (b): Compute IDs of each subblock.

| e
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The Butterfly Algorithm

Step 4 (a): Final step, merge the strips and split them approximately in half.

|
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The Butterfly Algorithm

Step 4 (b): Final step, compute IDs of each subblock.

|l Pl o
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The Butterfly Algorithm

Let A € R"*" have rank-proportional-to-area.

@ Every time we merge-and-split, the complexity of a matrix-vector product
is approximately halved.

@ We have created a permuted and sparse block-diagonal factorization.

@ Costs O(kaygn?) to compute the factorization and O(kygnlog n) for a
matrix-vector product, where k¢ is the average rank of all IDs.

To convert all associated Legendre functions to orders 0 and 1, requires
O(kaygn®) flops to pre-compute and O(kaygn? log n) to apply.
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- Pt —_— . P} — . sinfl,

Hl—1 >0
— P P Te
—_— P = Pl = singU,
P2 P? Te
P! _— . P} ———— sinfU,

PO PO
P9 P T,

@ Convert high-order layers to layers of order 0 and 1 in O(kaygn? log n)
flops and O(kayen? log n) storage; and,

@ Convert low-order layers to Fourier series in O(n? log n) flops and
O(nlog n) storage a la Fast Multipole Method.
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Chebyshev—-Legendre Transform

Definition
The meromorphic function A : C — C is defined by:

M(z+3)

A(z) = m

For z sufficiently large,

1 21
ANz)~[1- + ot +3
(2) ( 64(z+ 1)? ' 8192(z + L) ) / ‘TR

and otherwise:

ANz+1) B z+%

A(2) z+4+1°
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Chebyshev-Legendre Transform o MANITOBA
Conversion from FN’,? to cosines is given by:

. : 2-5

PP(cosf) = y/n+ 1 Z A(ZSEN(2EE) £0 cos 0.

™
{=n,—2
Inversely:
n =2 /\ n+l—1 ~
cosnf = —n Z 2€(r)1—sfﬁj-1)) C+ 1P)(cos?).

Similar expressions exist for converting P} to sines.
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Chebyshev—-Legendre Transform

Many methods convert between Chebyshev and Legendre expansions:

@ Using asymptotics, Legendre polynomial oscillations are localized in
frequency;

@ Using a fast partial Cholesky decomposition, the diagonally-scaled
Toeplitz-dot-Hankel structure may be exploited; or,

@ Using an adaptation of the Fast Multipole Method, subblocks of
connection coefficients well-separated from the main diagonal are
well-approximated by low-rank matrices.
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Fast Multipole Method

The method, due to Greengard and Rokhlin, originates from the multipole
expansion of the Coulombic potential:

! L = ii (r—ro)nPn(cosH).

r—rol  \/r2—2rrycosf + r2

Expansion for sufficiently small ry/r < 1,

& O(log(s71)) terms in the multipole expansion for
approximation to precision ¢,

< Subblocks well-separated from the main diagonal.

Alpert and Rokhlin use FMM to accelerate the Chebyshev—Legendre
transform.
What does well-separation resemble?
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Fast Multipole Method

An upper-triangular matrix with subblocks well-separated from the main

diagonal:
0 |
[

15 of 21




UNIVERSITY
of MANITOBA

. Bt N sin U,
— P! PY T,
P} = - . P} = — sl
P2 P? Te
'E’Zl - 0 090 . }5[1 sinQU,
Po P? Te

@ Convert high-order layers to layers of order 0 and 1 in O(kaygn? log n)
flops and O(kaygn?®log n) storage; and,

@ Convert low-order layers to Fourier series in O(n? log n) flops and
O(nlog n) storage a la Fast Multipole Method.

Can we beat O(kaygn®) pre-computation?
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Skeletonizing the Pre-Computation =

No, but skeletonizing the pre-computation makes it practical for a laptop.
Neighbouring layers are converted via Given rotations.
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Numerical Results: Slow

e Error L]

10-14 4

Maximum 2-norm of the columns

10-15

10! 10? 103 104
Bandlimit n
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Numerical Results: Slow

UNIVERSITY
of MANITOBA

Execution Time (s)

18 of 21

10* 4 e Pre-computation
X  Forward Execution
+ Transpose Execution xxi.(
2] * 2DDCTofF XFT
T o i
-=- 0(n?) >§+ **t_
* *x 7
0 ¥¥ **t/”.’0 !
10° 4 ***”/. *e
"0, ¢
L]
10-2
10—4 4
10! 102 103 104

Bandlimit n
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Numerical Results: Fast

10713 4

10714

Maximum 2-norm of the columns

103 104
Bandlimit n
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Numerical Results: Fast
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e  Pre-computation
1034 X Forward Execution
+ Transpose Execution
— 0o(n3)
2 |
10 ——= O(n5?)

a

g 104
£
=
o

S 100
|9)
9}
X
w

10-1 4

1072 4 §td
-
¥
103
Bandlimit n
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Numerical Results: Fast

e Bytes
1010 | (9(!75/2)
1094
1%
g
>
2
Py
S 108 4
1S
[
=
107 B
106 4
103 104
Bandlimit n
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Numerical Results: Fast

i kavg
— O(logn) -

-
- kavgika -

102 4

Average rank

6 x 10!

4x10!

103 104
Bandlimit n
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Conclusion & Outlook

New transforms are created to convert spherical harmonic expansions into
bivariate Fourier series.

@ They are asymptotically fast, O(n? log? n), and backward stable by
construction. For practical band-limits of n < (10, 000), the
asymptotically optimal complexity does not yet appear.

They are freely available in JULIA in FastTransforms.jl.

A straightforward extension to conversion of Zernike polynomials to
Fourier—Chebyshev series on the unit disk.

@ A similar approach might extend to more exotic bivariate orthogonal
polynomials on triangles.

Is there a pre-computation-free method?
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