Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series

University
of Manitoba

Richard Mikael Slevinsky

Department of Mathematics, University of Manitoba

Richard.Slevinsky@umanitoba.ca

OPSFA

July 3, 2017

Spherical Harmonics

Let μ be a positive Borel measure on $D \subset \mathbb{R}^{n}$. The inner product:

$$
\langle f, g\rangle=\int_{D} \overline{f(x)} g(x) \mathrm{d} \mu(x)
$$

induces the norm $\|f\|_{2}=\sqrt{\langle f, f\rangle}$ and the Hilbert space $L^{2}(D, \mathrm{~d} \mu(x))$.
Let $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ denote the unit 2-sphere and let $\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \varphi$.
Then any function $f \in L^{2}\left(\mathbb{S}^{2}, \mathrm{~d} \Omega\right)$ may be expanded in spherical harmonics:

$$
f(\theta, \varphi) \sim \sum_{\ell=0}^{+\infty} \sum_{m=-\ell}^{+\ell} f_{\ell}^{m} Y_{\ell}^{m}(\theta, \varphi)=\sum_{m=-\infty}^{+\infty} \sum_{\ell=|m|}^{+\infty} f_{\ell}^{m} Y_{\ell}^{m}(\theta, \varphi),
$$

where the expansion coefficients are:

$$
f_{\ell}^{m}=\int_{\mathbb{S}^{2}} \overline{Y_{\ell}^{m}(\theta, \varphi)} f(\theta, \varphi) \mathrm{d} \Omega
$$

Spherical Harmonics

Spherical harmonics are defined by:

$$
Y_{\ell}^{m}(\theta, \varphi)=\frac{e^{\mathrm{i} m \varphi}}{\sqrt{2 \pi}} \underbrace{\mathrm{i}^{m+|m|} \sqrt{\left(\ell+\frac{1}{2}\right) \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos \theta)}_{\tilde{P}_{\ell}^{m}(\cos \theta)}, \quad \ell \in \mathbb{N}_{0}, \quad-\ell \leq m \leq \ell .
$$

Associated Legendre functions are defined by ultraspherical polynomials:

$$
P_{\ell}^{m}(\cos \theta)=(-2)^{m}\left(\frac{1}{2}\right)_{m} \sin ^{m} \theta C_{\ell-m}^{\left(m+\frac{1}{2}\right)}(\cos \theta) .
$$

The notation \tilde{P}_{ℓ}^{m} is used to denote orthonormality, and:

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}
$$

is the Pochhammer symbol for the rising factorial.

Spherical Harmonics

Consider the Laplace-Beltrami operator on \mathbb{S}^{2} :

$$
\Delta_{\theta, \varphi}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} .
$$

For $\ell \in \mathbb{N}_{0}$ and $|m| \leq \ell$, the surface spherical harmonics are the eigenfunctions of $\Delta_{\theta, \varphi}$:

$$
\Delta_{\theta, \varphi} Y_{\ell}^{m}(\theta, \varphi)=-\ell(\ell+1) Y_{\ell}^{m}(\theta, \varphi) .
$$

Spherical harmonics diagonalize the Laplace-Beltrami operator.

Real-(World) Applications

- Global Numerical Weather Prediction (NWP). Global climate models at the European Centre for Medium-Range Weather Forecasts use spherical harmonics to represent the world's climate with a horizontal resolution of approximately 10 km , corresponding to roughly 64 million degrees of freedom.
- Analysis of the Planck experiment. The European Space Agency sent the PLANCK satellite in orbit in 2013 to collect cosmic background radiation in an attempt to observe the first light of the universe. High resolution data are analyzed by spherical harmonics.
- Time-dependent Schrödinger equation in angular coordinates:

$$
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=(\hat{\mathcal{T}}+\hat{\mathcal{V}}(t))|\Psi(t)\rangle, \quad\left|\Psi\left(t_{0}\right)\right\rangle=\left|\Psi_{0}\right\rangle
$$

models polarization effects.

Time Evolution

- Many real-world applications may be abstracted to semi-linear PDEs:

$$
u_{t}=\mathcal{L} u+\mathcal{N}(u, t), \quad u\left(t_{0}\right)=u_{0} .
$$

where \mathcal{L} is a linear (differential) operator, and \mathcal{N} is not.

- Usually, $\mathcal{L}=\Delta$ or something similar and $\mathcal{N}(u, t)=u^{2}$, for example.
- Higher-order derivatives in time are reformulated as a system.
- Many algorithms exist for semi-linear time-stepping:
- Operator splitting preserves unitarity;
- Exponential integrating integrates the stiff linear term exactly; and,
- Implicit-explicit schemes are designed for versatility \& efficiency.
- Problem: \mathcal{L} is localized in momentum (coefficient) space and \mathcal{N} is localized in physical (value) space.

Problem

Fast transforms are required to convert between representations in momentum and physical spaces:

Synthesis Convert an expansion in spherical harmonics to function values on the sphere.
Analysis Convert function values on the sphere to spherical harmonic expansion coefficients.
For a band-limit of $\ell \leq n$, the naïve cost is $\mathcal{O}\left(n^{4}\right)$ but it can be trivially reorganized to $\mathcal{O}\left(n^{3}\right)$. The goal is a run-time of $\mathcal{O}\left(n^{2} \log ^{\mathcal{O}(1)} n\right)$.
This has a rich history, including works by Driscoll and Healy, Mohlenhamp, Suda and Takami, Kunis and Potts, Rokhlin and Tygert and Tygert.
Questions about current approaches:

- Which grids should be chosen? If tensor-product grids, should they be Gaussian or equispaced-in-angle?
- Is the method numerically stable? Important for time evolution.

Solution: Change the Problem

The sphere is doubly periodic and supports a bivariate Fourier series.

- The FFT, DCT, and DST solve synthesis and analysis.
- Nonuniform variants extend this to arbitrary grids.
- $Y_{\ell}^{m}(\theta, \varphi)=\frac{e^{\mathrm{i} m \varphi}}{\sqrt{2 \pi}} \tilde{P}_{\ell}^{m}(\cos \theta) \Rightarrow$ in longitude, we are done.
- The problem is to convert $\tilde{P}_{\ell}^{m}(\cos \theta)$ to Fourier series.
- Since $\tilde{P}_{\ell}^{m}(\cos \theta) \propto \sin ^{m} \theta C_{\ell-m}^{\left(m+\frac{1}{2}\right)}(\cos \theta)$,
- even-ordered \tilde{P}_{ℓ}^{m} are trigonometric polynomials in $\cos \theta$; and,
- odd-ordered \tilde{P}_{l}^{m} are trigonometric polynomials in $\sin \theta$.
- Conversions are not one-to-one.

The SH Connection Problem

Definition

- Let $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ be a family of orthogonal functions with respect to $L^{2}(\tilde{D}, \mathrm{~d} \tilde{\mu}(x))$; and,
- let $\left\{\psi_{n}(x)\right\}_{n \geq 0}$ be another family of orthogonal functions with respect to $L^{2}(D, \mathrm{~d} \mu(x))$.
The connection coefficients:

$$
c_{\ell, n}=\frac{\left\langle\psi_{\ell}, \phi_{n}\right\rangle_{\mathrm{d} \mu}}{\left\langle\psi_{\ell}, \psi_{\ell}\right\rangle_{\mathrm{d} \mu}}
$$

allow for the expansion:

$$
\phi_{n}(x) \sim \sum_{\ell=0}^{\infty} c_{\ell, n} \psi_{\ell}(x)
$$

The SH Connection Problem

University of Manitoba

Theorem

Let $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ and $\left\{\psi_{n}(x)\right\}_{n \geq 0}$ be two families of orthonormal functions with respect to $L^{2}(D, \mathrm{~d} \mu(x))$. Then the connection coefficients satisfy:

$$
\sum_{\ell=0}^{\infty} \overline{c_{\ell, m}} c_{\ell, n}=\delta_{m, n}
$$

- Any matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, with orthonormal columns is well-conditioned and Moore-Penrose pseudo-invertible $A^{+}=A^{\top}$.
- For every m, the $\tilde{P}_{\ell}^{m}(x)$ are a family of orthonormal functions for the same Hilbert space $L^{2}([-1,1], \mathrm{d} x)$.

The SH Connection Problem

University oғ Manitoba

Definition

Let G_{n} denote the Givens rotation:

$$
G_{n}=\left[\begin{array}{ccccccc}
1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & c_{n} & 0 & s_{n} & \cdots & 0 \\
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & -s_{n} & 0 & c_{n} & \cdots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

where the sines and the cosines are in the intersections of the $n^{\text {th }}$ and $n+2^{\text {nd }}$ rows and columns, embedded in the identity of a conformable size.

The SH Connection Problem

Theorem

The connection coefficients between $\tilde{P}_{n+m+2}^{m+2}(\cos \theta)$ and $\tilde{P}_{\ell+m}^{m}(\cos \theta)$ are:
$c_{\ell, n}^{m}=\left\{\begin{array}{cc}(2 \ell+2 m+1)(2 m+2) \sqrt{\frac{(\ell+2 m)!}{\left(\ell+m+\frac{1}{2}\right) \ell!} \frac{\left(n+m+\frac{5}{2}\right) n!}{(n+2 m+4)!}}, & \text { for } \quad \ell \leq n, \quad \ell+n \text { even }, \\ -\sqrt{\frac{(n+1)(n+2)}{(n+2 m+3)(n+2 m+4)}}, & \text { for } \\ 0, & \ell=n+2, \\ \text { otherwise } .\end{array}\right.$
Furthermore, the matrix of connection coefficients
$C^{(m)}=G_{0}^{(m)} G_{1}^{(m)} \cdots G_{n-2}^{(m)} G_{n-1}^{(m)} I_{(n+2) \times n}$, where the sines and cosines are:
$s_{n}^{m}=\sqrt{\frac{(n+1)(n+2)}{(n+2 m+3)(n+2 m+4)}}, \quad$ and $\quad c_{n}^{m}=\sqrt{\frac{(2 m+2)(2 n+2 m+5)}{(n+2 m+3)(n+2 m+4)}}$.

The SH Connection Problem

"Proof." W.I.o.g., consider $m=0$ and $n=6$.
$C^{(0)}=\left(\begin{array}{cccccc}0.91287 & 0.0 & 0.31623 & 0.0 & 0.17593 & 0.0 \\ 0.0 & 0.83666 & 0.0 & 0.39641 & 0.0 & 0.24398 \\ -0.40825 & 0.0 & 0.70711 & 0.0 & 0.3934 & 0.0 \\ 0.0 & -0.54772 & 0.0 & 0.60553 & 0.0 & 0.37268 \\ 0.0 & 0.0 & -0.63246 & 0.0 & 0.5278 & 0.0 \\ 0.0 & 0.0 & 0.0 & -0.69007 & 0.0 & 0.46718 \\ 0.0 & 0.0 & 0.0 & 0.0 & -0.73193 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." Apply the Givens rotation $G_{0}^{(0) \top}$:
$G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.83666 & 0.0 & 0.39641 & 0.0 & 0.24398 \\ 0.0 & 0.0 & 0.7746 & 0.0 & 0.43095 & 0.0 \\ 0.0 & -0.54772 & 0.0 & 0.60553 & 0.0 & 0.37268 \\ 0.0 & 0.0 & -0.63246 & 0.0 & 0.5278 & 0.0 \\ 0.0 & 0.0 & 0.0 & -0.69007 & 0.0 & 0.46718 \\ 0.0 & 0.0 & 0.0 & 0.0 & -0.73193 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." And again:
$G_{1}^{(0) \top} G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.7746 & 0.0 & 0.43095 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.72375 & 0.0 & 0.44544 \\ 0.0 & 0.0 & -0.63246 & 0.0 & 0.5278 & 0.0 \\ 0.0 & 0.0 & 0.0 & -0.69007 & 0.0 & 0.46718 \\ 0.0 & 0.0 & 0.0 & 0.0 & -0.73193 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." And again:
$G_{2}^{(0) \top} G_{1}^{(0) \top} G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.72375 & 0.0 & 0.44544 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.68139 & 0.0 \\ 0.0 & 0.0 & 0.0 & -0.69007 & 0.0 & 0.46718 \\ 0.0 & 0.0 & 0.0 & 0.0 & -0.73193 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." And again:

$G_{3}^{(0) \top} G_{2}^{(0) \top} G_{1}^{(0) \top} G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.68139 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.6455 \\ 0.0 & 0.0 & 0.0 & 0.0 & -0.73193 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." And again:
$G_{4}^{(0) \top} G_{3}^{(0) \top} G_{2}^{(0) \top} G_{1}^{(0) \top} G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.6455 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.76376\end{array}\right)$

The SH Connection Problem

"Proof." And finally:
$G_{5}^{(0) \top} G_{4}^{(0) \top} G_{3}^{(0) \top} G_{2}^{(0) \top} G_{1}^{(0) \top} G_{0}^{(0) \top} C^{(0)}=\left(\begin{array}{cccccc}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}\right)$

The SH Connection Problem

University of Manitoba
"Proof." Schematically:

- Conversion between neighbouring layers is $\mathcal{O}(n)$ flops and storage.
- The Givens rotations are computed to high relative accuracy due to analytical expressions of sines and cosines \Rightarrow backward stable.

Spherical Harmonics to Fourier

(1) Convert high-order layers to layers of order 0 and 1 in $\mathcal{O}\left(n^{3}\right)$ flops and $\mathcal{O}\left(n^{2}\right)$ storage; and,
(2) Convert low-order layers to Fourier series in $\mathcal{O}\left(n^{2} \log n\right)$ flops and $\mathcal{O}(n \log n)$ storage à la Fast Multipole Method.
To make an algorithm fast, we usually need to make approximations.

A Fast Transform

To convert high-order layers to layers of order 0 and 1 in $\mathcal{O}\left(n^{2} \log ^{2} n\right)$ flops, we need something more.
For $m \in \mathbb{N}$, the connection coefficients between $\tilde{P}_{\ell+2 m}^{2 m}$ and \tilde{P}_{n}^{0} are given by the inner product:

$$
c_{\ell, n}^{2 m}=\int_{-1}^{1} \tilde{P}_{\ell+2 m}^{2 m}(x) \tilde{P}_{n}^{0}(x) \mathrm{d} x
$$

Using the Fourier transform of \tilde{P}_{n}^{0} :

$$
c_{\ell, n}^{2 m}=\frac{(-\mathrm{i})^{n} \sqrt{n+\frac{1}{2}}}{\pi} \int_{\mathbb{R}} j_{n}(k) \mathrm{d} k \int_{-1}^{1} e^{\mathrm{i} k x} \tilde{P}_{\ell+2 m}^{2 m}(x) \mathrm{d} x
$$

The matrix of connection coefficients is an operator composition with the variables $(n \times k) \times(k \times x) \times(x \times \ell)$. The Fourier integral operator is special.

The Butterfly Algorithm

University of Manitoba

Purpose: Abstract the algebra of the FFT.
Technique: Divide-and-conquer \Leftrightarrow merge-and-split.
Technology: The interpolative decomposition.
Proof: Fourier integral operators have rank-proportional-to-area.
The ranks of operator compositions are bounded by the smallest rank in the composition, extending applicability beyond Fourier integral operators.

The Interpolative Decomposition

Lemma

Let $A \in \mathbb{R}^{m \times n}$. For any k, there exist $A_{\mathrm{CS}} \in \mathbb{R}^{m \times k}$ whose columns are a unique subset of the columns of A and $A_{I} \in \mathbb{R}^{k \times n}$ such that:
(1) some subset of the columns of A_{I} makes up the $k \times k$ identity matrix;
(2) $\left\|\operatorname{vec}\left(A_{\mathrm{I}}\right)\right\|_{\infty} \leq 1$;
(3) the spectral norm of A_{I} satisfies $\left\|A_{\mathrm{I}}\right\|_{2} \leq \sqrt{k(n-k)+1}$;
(0) the least singular value of A_{I} is at least 1 ;
(1) $A_{\mathrm{CS}} A_{\mathrm{I}}=A$ whenever $k=m$ or $k=n$; and,
(0) when $k<\min \{m, n\}$, the spectral norm of $A-A_{\mathrm{CS}} A_{\mathrm{I}}$ satisfies:

$$
\left\|A-A_{\mathrm{CS}} A_{\mathrm{I}}\right\|_{2} \leq \sqrt{k(n-k)+1} \sigma_{k+1} .
$$

where σ_{k+1} is the $k+1^{\text {st }}$ singular value of A.
We say that $A \approx A_{\mathrm{CS}} A_{\mathrm{I}}$ and any structure in A is also in A_{CS}.

The Butterfly Algorithm

University of Manitoba

Step 1: Partition $A \in \mathbb{R}^{n \times n}$ into thin strips. Compute IDs of each subblock.

The Butterfly Algorithm

University of Manitoba

Step 2 (a): Merge the strips and split them approximately in half.

The Butterfly Algorithm

Step 2 (b): Compute IDs of each subblock.

The Butterfly Algorithm

Step 3 (a): Again, merge the strips and split them approximately in half.

The Butterfly Algorithm

Step 3 (b): Compute IDs of each subblock.

The Butterfly Algorithm

Step 4 (a): Final step, merge the strips and split them approximately in half.

The Butterfly Algorithm

University of Manitoba

Step 4 (b): Final step, compute IDs of each subblock.

The Butterfly Algorithm

Let $A \in \mathbb{R}^{n \times n}$ have rank-proportional-to-area.

- Every time we merge-and-split, the complexity of a matrix-vector product is approximately halved.
- We have created a permuted and sparse block-diagonal factorization.
- Costs $\mathcal{O}\left(k_{\text {avg }} n^{2}\right)$ to compute the factorization and $\mathcal{O}\left(k_{\text {avg }} n \log n\right)$ for a matrix-vector product, where $k_{\text {avg }}$ is the average rank of all IDs.
To convert all associated Legendre functions to orders 0 and 1 , requires $\mathcal{O}\left(k_{\text {avg }} n^{3}\right)$ flops to pre-compute and $\mathcal{O}\left(k_{\text {avg }} n^{2} \log n\right)$ to apply.

Spherical Harmonics to Fourier

University of Manitoba

(1) Convert high-order layers to layers of order 0 and 1 in $\mathcal{O}\left(k_{\text {avg }} n^{2} \log n\right)$ flops and $\mathcal{O}\left(k_{\text {avg }} n^{2} \log n\right)$ storage; and,
(2) Convert low-order layers to Fourier series in $\mathcal{O}\left(n^{2} \log n\right)$ flops and $\mathcal{O}(n \log n)$ storage à la Fast Multipole Method.

Chebyshev-Legendre Transform

Definition

The meromorphic function $\Lambda: \mathbb{C} \rightarrow \mathbb{C}$ is defined by:

$$
\Lambda(z):=\frac{\Gamma\left(z+\frac{1}{2}\right)}{\Gamma(z+1)}
$$

For z sufficiently large,

$$
\Lambda(z) \approx\left(1-\frac{1}{64\left(z+\frac{1}{4}\right)^{2}}+\frac{21}{8,192\left(z+\frac{1}{4}\right)^{4}}+\cdots+\right) / \sqrt{z+\frac{1}{4}}
$$

and otherwise:

$$
\frac{\Lambda(z+1)}{\Lambda(z)}=\frac{z+\frac{1}{2}}{z+1}
$$

Chebyshev-Legendre Transform

Conversion from \tilde{P}_{n}^{0} to cosines is given by:

$$
\tilde{P}_{n}^{0}(\cos \theta)=\sqrt{n+\frac{1}{2}} \sum_{\ell=n,-2}^{0} \Lambda\left(\frac{n-\ell}{2}\right) \Lambda\left(\frac{n+\ell}{2}\right) \frac{2-\delta_{\ell, 0}}{\pi} \cos \ell \theta
$$

Inversely:

$$
\cos n \theta=-n \sum_{\ell=n,-2}^{0} \frac{\Lambda\left(\frac{n-\ell-2}{2}\right) \Lambda\left(\frac{n+\ell-1}{2}\right)}{(n-\ell)(n+\ell+1)} \sqrt{\ell+\frac{1}{2}} \tilde{P}_{\ell}^{0}(\cos \theta)
$$

Similar expressions exist for converting \tilde{P}_{n}^{1} to sines.

Chebyshev-Legendre Transform

Many methods convert between Chebyshev and Legendre expansions:

- Using asymptotics, Legendre polynomial oscillations are localized in frequency;
- Using a fast partial Cholesky decomposition, the diagonally-scaled Toeplitz-dot-Hankel structure may be exploited; or,
- Using an adaptation of the Fast Multipole Method, subblocks of connection coefficients well-separated from the main diagonal are well-approximated by low-rank matrices.

Fast Multipole Method

The method, due to Greengard and Rokhlin, originates from the multipole expansion of the Coulombic potential:

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}=\frac{1}{\sqrt{r^{2}-2 r r_{0} \cos \theta+r_{0}^{2}}}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r_{0}}{r}\right)^{n} P_{n}(\cos \theta) .
$$

Expansion for sufficiently small $r_{0} / r \ll 1$,
$\Leftrightarrow \mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)$ terms in the multipole expansion for approximation to precision ε,
\Leftrightarrow Subblocks well-separated from the main diagonal.
Alpert and Rokhlin use FMM to accelerate the Chebyshev-Legendre transform.
What does well-separation resemble?

Fast Multipole Method

An upper-triangular matrix with subblocks well-separated from the main diagonal:

Spherical Harmonics to Fourier

(1) Convert high-order layers to layers of order 0 and 1 in $\mathcal{O}\left(k_{\text {avg }} n^{2} \log n\right)$ flops and $\mathcal{O}\left(k_{\text {avg }} n^{2} \log n\right)$ storage; and,
(2) Convert low-order layers to Fourier series in $\mathcal{O}\left(n^{2} \log n\right)$ flops and $\mathcal{O}(n \log n)$ storage à la Fast Multipole Method.
Can we beat $\mathcal{O}\left(k_{\text {avg }} n^{3}\right)$ pre-computation?

Skeletonizing the Pre-Computation

No, but skeletonizing the pre-computation makes it practical for a laptop. Neighbouring layers are converted via Given rotations.

Numerical Results: Slow

Numerical Results: Slow

Numerical Results: Fast

University oғ Manitoba

Numerical Results: Fast

Numerical Results: Fast

University of Manitoba

Numerical Results: Fast

Conclusion \& Outlook

- New transforms are created to convert spherical harmonic expansions into bivariate Fourier series.
- They are asymptotically fast, $\mathcal{O}\left(n^{2} \log ^{2} n\right)$, and backward stable by construction. For practical band-limits of $n \leq \mathcal{O}(10,000)$, the asymptotically optimal complexity does not yet appear.
- They are freely available in Julia in FastTransforms.jl.
- A straightforward extension to conversion of Zernike polynomials to Fourier-Chebyshev series on the unit disk.
- A similar approach might extend to more exotic bivariate orthogonal polynomials on triangles.
- Is there a pre-computation-free method?

References

University of Manitoba
(1) B. K. Alpert and V. Rokhlin. SIAM J. Sci. Stat. Comput., 12:158-179, 1991.
(2) L. Greengard and V. Rokhlin. J. Comp. Phys., 73:325-348, 1987.
(3) N. Hale and A. Townsend. SIAM J. Sci. Comput., 36:A148-A167, 2014.
(4) E. Liberty et al. Proc. Nat. Acad. Sci., 104:20167-20172, 2007.
(5) M. J. Mohlenkamp. J. Fourier Anal. Appl., 5:159-184, 1999.
(6) A. Mori, R. Suda, and M. Sugihara. 40:3612-3615, 1999.
(7) S. A. Orszag. Science and Computers., 13-30, 1986.
(8) V. Rokhlin and M. Tygert. SIAM J. Sci. Comput., 27:1903-1928, 2006.
(9) R. M. Slevinsky. arXiv:1705.05448, 2017.
(10) R. Suda and M. Takami. Math. Comp., 71:703-715, 2002.
(1) A. Townsend, M. Webb, and S. Olver. Math. Comp., in press, 2017.
(12) M. Tygert. J. Comp. Phys., 227:4260-4279, 2008.
(13) M. Tygert. J. Comp. Phys., 229:6181-6192, 2010.

