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Summary

Geographically-dependent individual level models (GD-ILMs) are a class of statis-
tical models that can be used to study the spread of infectious disease through a
population in discrete-time in which covariates can be measured both at individual
and area levels. The typical ILMs to illustrate spatial data are based on the distance
between susceptible and infectious individuals. A key feature of GD-ILMs is that
they take into account the spatial location of the individuals in addition to the dis-
tance between susceptible and infectious individuals. As a motivation of this paper,
we consider tuberculosis (TB) data which is an infectious disease which can be
transmited through individuals. It is also known that certain areas/demographics/-
communities have higher prevalent of TB (see Section 4 for more details). It is also
of interest of policy makers to identify those areas with higher infectivity rate of TB
for possible preventions. Therefore, we need to analyze this data properly to address
those concerns. In this paper, the Expectation Conditional Maximization algorithm
is proposed for estimating the parameters of GD-ILMs to be able to predict the areas
with the highest average infectivity rates of TB. We also evaluate the performance
of our proposed approach through some simulations. Our simulation results indicate
that the proposed method provides reliable estimates of parameters which confirms
accuracy of the infectivity rates.

KEYWORDS:
Conditional autoregressive model; Expectation Conditional Maximization algorithm; Individual-level
models; Susceptible-infected-removed model.

1 INTRODUCTION

Despite the global efforts to reduce tuberculosis (TB) incidence and mortality rates, the World Health Organization (WHO)
points out that TB is in the top ten causes of death worldwide in 2017. TB is an infectious disease that is transmitted from person
to person through the air. The distance between infected and susceptible individuals is then one of the factors that affects on
the TB incidence. Geographical location is also key in the TB burden such that 95% of TB cases and deaths are in developing
countries such as India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh, and South Africa. Spatial locations
are then important for understanding the spread of emerging infectious diseases and identifying their causes, since spatially
varying demographic and environmental factors could influence the disease transmission (e.g., Kristoffersen et al,1 Rees et al2).
For instance, studies show that factors such as living in overcrowded conditions, ambient air pollution exposure, temperature,
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humidity, sunlight, urbanization and racial/ethnic group have a significant effect on the incidence and transmission of the TB
(Lienhardt,3 Laumbach and Kipen,4 Fares,5 Smith et al,6 Onozuka and Hagihara7). Due to the aforementioned points, the health
statuses of individuals are correlated. So, the typical regression model which violates the correlations is not a suitable choice
for analyzing this type of infectious disease. Also, one common approach for modeling correlated data is the population average
model (aka marginal model) which addresses correlation in the responses through the covariance structure using generalized
estimating equations. Since this model follows a different target, unable to provide an explanation for the source of correlation
(e.g., the individuals distances heterogeneity) and it is not suitable for analyzing the type of infectious diseases which their
prevalence are similar to TB. For infectious disease data analysis, it is very important to develop a model that can describe
the transmission of disease dynamics based on spatial location of disease, spatial distance between individuals and population
heterogeneity. The goal of this paper is to analyze the TB data in Manitoba, Canada, to address the above concerns. Although
Canada is a low TB incidence country in the global context, the rate of TB incidence has been increasing since 2014. Therefore,
identification of geographic areas that are at greater risk ofmortality andmorbidity of TB and also determining factors potentially
responsible for increase of TB incidence can help policymakers to make effective healthcare and social policies for TB control.
Over more than a century, mathematical modeling of infectious diseases has become an important tool to understand patterns

of disease spread and to provide significant knowledge in the design of programs for disease control intervention and/or preven-
tion. One of the most important disease-transmission model is the equation based compartmental epidemic model introduced
by Kermack and McKendrick8, commonly known as susceptible-infected-removed (SIR) model. This model categories indi-
viduals in a population who are able to contract an infection, are capable of spreading the infection, and are removed from the
susceptible population, respectively. For more information in both the history and use of SIR models see Keeling and Rohani.9
Generally, such mathematical models have been used to study epidemic outbreaks of infectious diseases; for example, the 2001
foot-and-mouth disease epidemic in the UK (Keeling et al,10 Jewell et al,11 Deardon et al12), severe acute respiratory syndrome
(McBryde et al13), Ebola (Chowell et al,14 McKinley et al,15 D’Silva and Eisenberg16), and HIV AIDS (Becker et al,17 Perelson
and Nelson,18 Sweeting et al,19 Taffe et al20).
In the recent years, the rapid growth in the availability of geographical data together with the advances in computational

power, present a unique opportunity for the spatio-temporal analysis of infectious disease data. A vast literature exists on the
spatio-temporal analysis of infectious disease data (see, e.g. Hughes et al,21 Ster and Ferguson,22 Deardon et al,12 Kwong and
Deardon,23 Brown et al,24 Pokharel and Deardon,25 Mahsin et al26). In particular, individual-level model (ILM) of Deardon et
al12 has becamewidely used for the analysis of space-time infectious disease data. The term ILM refers to models which consider
covariates and disease information at the level of individuals in a population. The proposed framework of Deardon et al12 can be
used to estimate the probability of a susceptible individual becoming infected in a given period of time, by allowing information
on disease susceptibility and transmissibility factors (e.g. the number and/or types of animals on a farm, environmental factors,
etc.), and the effect of the distance between infected and susceptible individuals to be incorporated in the models. However,
these models assume that the probability of disease transmission between two individuals depend only on their spatial separation
and not on their spatial locations. Recently, Mahsin et al26 studied the effect of the geographical location on the outbreak of an
infectious disease. They generalized the ILMs of Deardon et al12 to a new class of geographically-dependent ILMs (GD-ILMs)
to allow for the evaluation of the effect of spatially varying social risk factors (e.g., education, social deprivation), environmental
factors, as well as unobserved spatial structure, upon the transmission of infectious disease. They used a mixed effect model for
capturing the spatial correlation by incorporating spatially defined random effects in the model, with the well-known conditional
autoregressive (CAR) model (Breslow and Clayton,27 Leroux et al28).
So far, inference for ILMs has been mainly implemented within a Bayesian framework. The Bayesian approach focuses on

post-data perspectives while the frequentist approach concentrate on the pre-data aspects of the statistical inference. The aim of
this paper is to focus on a frequentist approach for fitting such ILMs. Maximum likelihood estimation of the GD-ILMs is carried
out via the Expectation Conditional Maximization (ECM) algorithm (Meng and Rubin29), which is an accelerated variant of the
Expectation Maximization (EM) algorithm (Dempster et al30). We evaluate the performance of the proposed method through
simulation studies. Our results show that the GD-ILMs are able to correctly identify the infectious disease dynamics through
accurate estimation of coefficients associated with both individual and areal-level covariates as well as spatial parameters. We
investigate average infectivity rates in each area at different time point. Such quantities could help better target policy and
infrastructure planning for prevention and control of infectious diseases. We further illustrate this method through the analysis
of TB data in Manitoba, Canada.
The rest of this paper is organized as follows. In Section 2, the GD-ILMs are described. The proposed method of parameter

estimation via the ECM algorithm is provided in Section 3. We analyze our TB data using the proposed method in Section 4.
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In order to investigate the performance and accuracy of the proposed ECM algorithm to estimate the model parameters we use
some simulation studies in Section 5. We conclude with a general discussion in Section 6. Technical details are deffered to the
Appendix.

2 INFECTIOUS DISEASE MODELING

2.1 Individual-level models
Deardon et al12 introduced a class of discrete time ILMs which are used as the starting point for models in this study. For
the purposes of this paper, we briefly describe the ILM class within a SIR compartmental framework. A finite population of
individuals (i = 1, ..., n) is assumed. At a discrete time point t, t = 1,… , tmax, (tmax is the last time point observed, often the
length of the epidemic) an individual i can be in one, and only one, of three compartments of states (susceptible, infected,
removed). We introduce the following notation. S(t) refers to the set of individuals who are susceptible to the disease at time
t; I(t) refers to the set of individuals who are infectious and can infect others at time t; and finally R(t) refers to the set of
individuals who have been removed from the population at time t.
In the ILM of Deardon et al12, the probability that a susceptible individual, i, will become infected at time t is denoted by

P (i, t) = 1 − exp
(

− ΩS(i)
∑

j∈I(t)
ΩT (j)k(i, j) + �(i, t)

)

, (1)

whereΩS(i) andΩT (j) are functions that represent susceptibility factors for individual i and transmissibility factors for individual
j, respectively. k(i, j) is the infection kernel representing shared risk factors between susceptible and infectious individuals.
The infection kernel could be a function of some types of contact between susceptible individual i and infectious individual j
representing connections within the observed population that allow for possible transfer of infective agents (e.g. Euclidean or
road distance). �(i, t) is the sparks term, representing a function of risk factors associated with some random behaviour that is
not well explained by the other terms in the model.
Let Yit, i = 1,… , n, t = 1,… , tmax, be an event that a susceptible individual i is infected at time t. So, the probability mass

function (p.m.f.) of Yit can be written as P (Yit = y) = P (i, t)y(1 − P (i, t))1−y, y = 0, 1, which y = 1 means that individual is
infected. For a random sample of size n, the likelihood function of y = (y1,… , yn)⊤ can be written as

f (y) =
tmax
∏

t=1

{

∏

i∈S(t+1)

(

1 − P (i, t)
)

∏

i∈I(t+1)∖I(t)
P (i, t)

}

,

where S(t + 1) is the set of all susceptible individuals observed not to be infected at time t and I(t + 1)∖I(t) is the set of all
newly infected individuals within this interval.

2.2 Geographically-dependent ILMs
In the standard ILM (1), it is assumed that the spatial function k(i, j) depends only upon the distance between susceptible
and infectious individuals, but not the spatial location of the individuals. However, spatial locations are often important for
understanding the spread of emerging infectious diseases and identifying their causes. Recently, in order to investigate the effect
of spatially varying risk factors upon the transmission of infectious disease, an extension of the ILM was proposed by Mahsin et
al26. This model is called geographically-dependent ILM (GD-ILM). The probability of a susceptible individual i being infected
at time t in area (region) z in the GD-ILM framework has the form:

P (i, z, t) = 1 − exp
(

− ΩS(i, z)
∑

j∈I(t,z,�(z))
ΩT (j, z)k(i, j) + �(i, z, t)

)

, (2)

where z represents the area index which varies from 1 to m, �(z) is the set of neighboring areas that are adjacent to area z, and
I(t, z, �(z)) is the set of infectious individuals at time t in the zth location and its neighbouring areas. ΩS(i, z) and ΩT (j, z)
are susceptibility factors for individual i in area z and transmissibility factors for individual j in area z, respectively. k(i, j) is
the infection kernel that represents shared risk factors associated with both susceptible individual i and infectious individual j;
�(i, z, t) called a spark function, represents a function of the risk factors associated with some random behaviour that considers
infections not well-explained by other model components.



4 Amiri ET AL

In this study, we define two forms of equation (2), in which the vector of p covariates associated with susceptible individual
i, Xi = (Xi1,… , Xip)⊤, and the vector of q area-level covariates corresponding to area z, Xz = (Xz1,… , Xzq)⊤. The covariates
Xi and Xz are incorporated into the susceptibility term ΩS(i, z). Also, for simplicity, the transmissibility term, ΩT (j, z), is set
to 1. The GD-ILMs that incorporate these covariates are defined as:

Model 1: P (i, z, t) = 1 − exp
(

− exp(� + X⊤i �1 + X
⊤
z �2 + uz)

∑

j∈I(t,z)
d−�ij

)

, (3)

and

Model 2: P (i, z, t) = 1 − exp
(

− exp(� + X⊤i �1 + X
⊤
z �2 + uz)

∑

j∈I(t,z,�(z))
d−�ij

)

, (4)

where � is the intercept, �1 = (�11,… , �1p)⊤ and �2 = (�21,… , �2q)⊤ are the vectors of parameters corresponding to Xi and Xz,
respectively. uz represents spatial random effects that provide a way of accounting for latent geographic variation or unmeasured
covariates effect, via the specification of some spatial structure between areas. I(t, z) is the set of infectious individuals at time
t in the zth area. The infection kernel is defined as k(i, j) = d−�ij where � > 0 is the spatial parameter and dij is the Euclidean
(earth) distance between susceptible individual i and infectious individual j.
In Model 1, it is assumed that the diseases spread out from infected individuals to susceptible individuals within each area, but
not from infectious individuals in neighboring areas, while in the Model 2, infectious individuals in adjacent areas have an effect
on the diseases spread through I(t, z, �(z)), where �(z) is the set of neighboring areas that are adjacent to area z. For each model,
we define P (i, z, t) as the rate of infectivity to a susceptible individual i at time point t in a given area z and also, the average
infectivity rate at time point t in area z is calculated as

�̄z(t) = n−1z

nz
∑

i=1
P (i, z, t), (5)

where nz is the number of individuals in the zth area.
To fit Models 1 and 2, many different choices of spatial random effects, u = (u1,… , um)⊤, are available in the context of disease
mapping (see e.g. Lee31). Among these, the method of Leroux et al28 is appealing because it allows for a weighted combination
of spatial independence and strong spatial dependence (Leroux et al28). Within this framework, the distribution function of u is
defined as

u ∼ Nm(0,�u), (6)
where generalized inverse of �u is defined as �−u = �

2[(1 − �)Im + �D] in which �2 and � ∈ [0, 1] quantify precision and spatial
dependence, respectively. A larger value of � ∈ [0, 1] indicates a higher degree of spatial dependence. This specification yields
two extreme cases: (i) � = 0 implies completely independent random effects and (ii) � = 1 implies intrinsic auto-regressive
model (Besag et al32). Im is the identity matrix of dimension m and D is a m × m matrix reflecting neighborhood structure.
Typically, neighbors are those areas that share a common boundary. The typical element of D is given by

dzz′ =
{

gz, z = z′,
−I{z ∼ z′}, z ≠ z′.

where gz is the number of neighbors of area z, z ∼ z′ indicates that regions z and z′ are neighbours, and I is the indicator
function.

3 PARAMETER ESTIMATION VIA THE ECM ALGORITHM

EM-type algorithms have been shown to be powerful computational techniques for obtaining ML estimates of model parame-
ters when data are not fully observed or the model contains latent variables. However, it is quite often that the EM algorithm
cannot be directly applied because of its maximization (M) step being difficult to compute. To obviate this weakness, Meng and
Rubin29 proposed an extension of the EM, called the Expectation Conditional Maximization (ECM) algorithm, which is easy
to implement and more broadly applicable than the EM. The key feature of the ECM is to replace the M-step of the EM with
several analytically tractable conditional maximization (CM) steps. Moreover, it shares all the appealing features of the EM and
can show faster convergence in terms of number of iterations or total computation time than the EM algorithm. Let y, z and u
indicate the vectors of responses, corresponding area of each response and spatial random effects, respectively. In this paper,
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to compute ML estimates of � = (�, �1, �2, �2, �, �), based on a random sample (y; z;u), we adopt the ECM algorithm as u is
latent. For this purpose, the likelihood function of the complete data yc = (y; z;u) is computed as follows:

L(�; yc) = f1(y|u, z)f2(u), (7)

where f2(u) is defined in (6) and the p.m.f of the f1(y|u, z), for Model 1 and Model 2, respectively, can be computed as follows:

f1(y|u, z) =
T
∏

t=1

{

∏

i∈S(t+1,z)

m
∏

z=1

(

1 − P (i, z, t)
)I(Zit=z) ∏

i∈I(t+1,z)∖I(t,z)

m
∏

z=1

(

P (i, z, t)
)I(Zit=z)

}

,

f1(y|u, z) =
T
∏

t=1

{

∏

i∈S(t+1,z)

m
∏

z=1

(

1 − P (i, z, t)
)I(Zit=z) ∏

i∈I(t+1,z,�(z))∖I(t,z,�(z))

m
∏

z=1

(

P (i, z, t)
)I(Zit=z)

}

,

where I(Zit = z) is an indicator function such that for i = 1,… , n, t = 1,… , tmax, z = 1,… , m

I(Zit = z) =
{

1, itℎ individual at time t is in ztℎ area,
0, otherwise.

3.1 E-step
In order to compute the conditional expected value of the complete-data log-likelihood, yc , given the observed data, yo = (y; z),
we need to determine the conditional distribution of the latent variable, u, given the observed data. Using Bayes rule, we have
f (u|y, z) = f1(y|u,z)f2(u)

f (y|z) . f (y|z) cannot generally be expressed in closed form and must be approximated. Among the possible
approximation methods, Laplace approximation is used here. The Laplace method has been designed to approximate integrals
as follows:

∫
Rd

exp(ℎ(u)) du ≈ (2�)
d
2
| −H(û)|−

1
2 exp(ℎ(û)), (8)

where H(û) = )2ℎ(u)
)u)u⊤ |u=û, and ℎ(u) is a known, uni-modal, and bounded function of a d-dimensional variable u, and û is the

value for which ℎ(u) is maximized. ℎ(u) = log(f1(y|u, z))+ log(f2(u)) and we adopt the Nelder-Mead method to find the û that
maximizes ℎ(u). Also, according to Theorem 4.14 of Evans and Swartz33, we have

∫
Rd

g(u) exp(ℎ(u)) du ≈ g(û)(2�)
d
2
| −H(û)|−

1
2 exp(ℎ(û)), (9)

where û is the value that maximizes the ℎ(u). For computing the expectation value for each function g(u), we are required to
evaluate ratios of integrals of the form

E[g(u)|yo,�] =
∫Rd g(u)f1(y|u, z)f2(u)du
∫Rd f1(y|u, z)f2(u)du

.

From (8) and (9), this expectation is approximated by

E[g(u)|yo,�] ≈ g(û).

In the (k + 1)th iteration of the EM algorithm this expectation is evaluated at �(k) where �(k) denotes the value of � obtained
in the ktℎ iteration of the EM algorithm.

3.2 M-step
Here, we consider Model 1. Estimation of parameters for the Model 2 can be found in the same manner, simply replacing
∑

j∈I(t,z) with
∑

j∈I(t,z,�(z)).
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According to (7), the conditional expectation of the complete data log-likelihood given observed data, yo, is

E
[

L(�; yc)|yo,�
]

=
T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z)E

[

− exp (� + X⊤i �1 + X
⊤
z �2 + uz)

∑

j∈I(t,z)
d−�ij

|

|

|

|

|

yo

]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)E

[

ln

(

1 − exp
(

− exp(� + X⊤i �1 + X
⊤
z �2 + uz)

∑

j∈I(t,z)
d−�ij

)

)

|

|

|

|

|

yo

]

−m
2
ln(2�) + m

2
ln(�2) + 1

2
ln
(

|

|

|

�D + (1 − �)I||
|

)

− �2

2
E

[

u⊤
(

�D + (1 − �)I
)

u||
|

yo

]

. (10)

We then need to maximize (10) with respect to model parameters.

3.2.1 CM-step 1
� is solution of the following equation

)E
[

L(�; yc)|yo,�
]

)�
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z) exp(�(k) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z) exp(�(k) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

. (11)

Unfortunately, there is no closed-form solution for the equation (11). We then employ the Newton-Raphson method to compute
the solution to (11). In this regard, we have

)2E
[

L(�; yc)|yo,�
]

)�2
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z) exp(�(k) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)

{

exp(�(k) + X⊤i �
(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

−exp(2�(k) + 2X⊤i �
(k)
1 + 2X⊤z �

(k)
2 )

(

∑

j∈I(t,z)
d−�(k)ij

)2
E

[

(1 − P (i, z, t))
P (i, z, t)2

exp(2uz)
|

|

|

|

|

yo,�(k)
]}

.

The following recursive relationship (first-order Taylor expansion) is obtained for computing �:

�(k+1) = �(k) −
)
)�
E
[

L(�; yc)|yo,�(k)
]

)2

)�2
E
[

L(�; yc)|yo,�(k)
] .

3.2.2 CM-step 2
Fix � = �(k+1). Analogous to the previous estimation, to estimate �1, we can write

)E
[

L(�; yc)|yo,�
]

)�1
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z)Xi exp(�(k+1) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)Xi exp(�(k+1) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

,
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and

)2E
[

L(�; yc)|yo,�
]

)�1)�⊤1
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z)XiX⊤i exp(�

(k+1) + X⊤i �
(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)

{

XiX⊤i exp(�
(k+1) + X⊤i �

(k)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

−XiX⊤i exp(2�
(k+1) + 2X⊤i �

(k)
1 + 2X⊤z �

(k)
2 )

(

∑

j∈I(t,z)
d−�(k)ij

)2
E

[

(1 − P (i, z, t))
P (i, z, t)2

exp(2uz)
|

|

|

|

|

yo,�(k)
]}

.

The following recursive relationship is obtained for computing �1:

� (k+1)1 = � (k)1 −
)
)�1
E
[

L(�; yc)|yo,�(k)
]

)2

)�1)�⊤1
E
[

L(�; yc)|yo,�(k)
] .

3.2.3 CM-step 3
Fix � = �(k+1) and �1 = � (k+1)1 . We update � (k)2 by maximizing (10) over �2, which gives

)E
[

L(�; yc)|yo,�
]

)�2
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z)Xz exp(�(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)Xz exp(�(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

,

and

)2E
[

L(�; yc)|yo,�
]

)�2)�⊤2
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z)XzX⊤z exp(�

(k+1) + X⊤i �
(k+1)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)

{

XzX⊤z exp(�
(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k)
2 )

∑

j∈I(t,z)
d−�(k)ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

−XzX⊤z exp(2�
(k+1) + 2X⊤i �

(k+1)
1 + 2X⊤z �

(k)
2 )

(

∑

j∈I(t,z)
d−�(k)ij

)2
E

[

(1 − P (i, z, t))
P (i, z, t)2

exp(2uz)
|

|

|

|

|

yo,�(k)
]}

.

The following recursive relationship is obtained for computing �2:

�(k+1)2 = � (k)2 −
)
)�2
E
[

L(�; yc)|yo,�(k)
]

)2

)�2)�⊤2
E
[

L(�; yc)|yo,�(k)
] .

3.2.4 CM-step 4
Fix � = �(k+1), �1 = � (k+1)1 and �2 = � (k+1)2 . We update �(k) by maximizing (10) over �, which leads to

)E
[

L(�; yc)|yo,�
]

)�
=

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z) exp(�(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k+1)
2 )

∑

j∈I(t,z)
ln(dij)d−�

(k)

ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

−
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z) exp(�(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k+1)
2 )

∑

j∈I(t,z)
ln(dij)d−�

(k)

ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

,
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and

)2E
[

L(�; yc)|yo,�
]

)�2
= −

T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
I(Zit = z) exp(�(k+1) + X⊤i �

(k+1)
1 + X⊤z �

(k+1)
2 )

∑

j∈I(t,z)
(ln(dij))2d−�

(k)

ij E

[

exp(uz)
|

|

|

|

|

yo,�(k)
]

+
T
∑

t=1

∑

i∈I(t+1)∖I(t)

m
∑

z=1
I(Zit = z)

{

exp(�(k+1) + X⊤i �
(k+1)
1 + X⊤z �

(k+1)
2 )

∑

j∈I(t,z)
(ln(dij))2d−�

(k)

ij E

[

(1 − P (i, z, t))
P (i, z, t)

exp(uz)
|

|

|

|

|

yo,�(k)
]

−exp(2�(k+1) + 2X⊤i �
(k+1)
1 + 2X⊤z �

(k+1)
2 )

(

∑

j∈I(t,z)
ln(dij)d−�

(k)

ij

)2
E

[

(1 − P (i, z, t))
P (i, z, t)2

exp(2uz)
|

|

|

|

|

yo,�(k)
]}

.

Hence, we have the following recursive relationship, for computing �:

�(k+1) = �(k) −
)
)�
E
[

L(�; yc)|yo,�(k)
]

)2

)�2
E
[

L(�; yc)|yo,�(k)
] .

3.2.5 CM-step 5
To update � and � on the M-step of the (k + 1)th iteration, the following equation should be maximized

E
[

ln(f (u))||
|

yo,�(k)
]

= −m
2
ln(2�) + m

2
ln(�2) + 1

2
ln

(

det
(

�D + (1 − �)I
)

)

− �2

2
E

[

uT
(

�D + (1 − �)I
)

u||
|

yo,�(k)
]

.

Hence, � and � are obtained by a Newton-Raphson iterative procedure as follows:
(

�
�

)new

=
(

�
�

)old

+ B−1A,

where A and B are the score vector and the expected information matrix which their elements can be defined as follows:

A(�) =
)E

[

ln(f (u))||
|

yo,�
]

)�
= m
�
− �E

[

u⊤
(

�D + (1 − �)I
)

u
|

|

|

|

|

yo,�(k)
]

,

A(�) =
)E

[

ln(f (u))||
|

yo,�
]

)�
= 1
2
tr

(

(

�D + (1 − �)I
)−1(

D − I
)

)

− �2

2
E

[

u⊤
(

D − I
)

u
|

|

|

|

|

yo,�(k)
]

,

B(�, �) = −
)2E

[

ln(f (u))||
|

yo,�
]

()�)2
= m
�2
+ E

[

u⊤
(

�D + (1 − �)I
)

u
|

|

|

|

|

yo,�(k)
]

,

B(�, �) = −
)2E

[

ln(f (u))||
|

yo,�
]

)�)�
= �E

[

u⊤
(

D − I
)

u
|

|

|

|

|

yo,�(k)
]

,

B(�, �) = −
)2E

[

ln(f (u))||
|

yo,�
]

()�)2
= 1
2
tr

(

(

D − I
)(

�D + (1 − �)I
)−1(

D − I
)(

�D + (1 − �)I
)−1

)

.

Using CM-step 1 to CM-step 5 we get updated model parameters at iteration (k+1), and continue this procedure until all model
parameters converge. The variances of the model parameter estimates are provided in the Appendix A using a Fisher information
matrix approach.
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4 DATA ANALYSIS: TUBERCULOSIS

TB is one of the leading causes of death worldwide. TB is caused by Mycobacterium tuberculosis bacteria that most often affect
the lungs. TB bacteria are spread from person to person through the air. When a person with lung TB coughs, speaks, or sings,
he/she propels the TB germs into the air, and a person nearby needs to inhale only a few of these bacteria to become infected.
For more information about TB, we refer the readers to Smith34 and Daniel35. Worldwide, a total of 10 million people fell ill
with TB in 2017, among whom only 6.4 million new cases of TB were reported to the WHO. This means that worldwide, 36%
of new cases went undiagnosed or were not reported. Studies have shown that men are at higher risk of contracting TB infection,
and dying from TB than women (Narasimhan et al,36 Horton et al37). In 2017, close to 3.2 million adult women contracted TB
and around 500,000 died from it, while it has been estimated that 6 million adult men fell ill and almost 840,000 died from it.
While Canada is a low TB incidence country, both the case count and rate have been increasing since 2014, especially in the
foreign born and indigenous Canadians population (LaFreniere et al38). Also, among different age groups, the highest number
of TB cases was among those aged 25-34 years.
In this study, we consider cases of TB in the Canadian province of Manitoba from 2017-2018. The data were provided by
Manitoba Health, and include gender, age, date of diagnosis and geographic location reported via postal code of residence.
Among 588 TB patients diagnosed between January 2017 and October 2018, 245 females and 343 males were recorded. Figure
1a provides the number of cases by age and sex. The highest number of TB cases occurred in the age group 25-34, and except the
first age group (< 25), the number of affected men was more than that of women. We incorporate age and sex as individual level
covariates in (3) and (4). The province of Manitoba consists of 11 Regional Health Authorities (RHAs) and is further divided to
59 RHA Districts (RHADs), 23 of which are part of Winnipeg. Each TB patient was geocoded to one of the 59 neighborhood
areas in Manitoba using their six digit postal code at the time of TB diagnosis, note that we did not have two diagnosed TB
patients with the same postal code. These 59 RHADs constitute the geographic areas used in the analysis. The number of TB
incidence in each area is plotted in Figure 1b.

>25 25−34 35−44 45−54 55−64 65+

Female

Male

Age group
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B

 c
a
s
e
s
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FIGURE 1 TB incidence cases in Manitoba from January 2017 to October 2018 based on: (a) age and sex, (b) regional health
authority districts.

In the following, we also consider some area-level covariates that may contribute to the number of people effected by the
TB outbreak. In many studies related to the TB disease, it has been found that socioeconomic status (SES) variables such as
income, education and health care access avaliability also have an important impact on the disease incidence and prevalence
(Bates et al,39 Ho,40 Gupta et al,41 Hargreaves et al42). Here, for each area, we also consider a number of sociodemographic
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(a) Immigrant (b) Indigenous

(c) Low-education (d) Median income (100000$)

FIGURE 2 Geographical distribution of sociodemographic characteristics (shown as percentage of population in the respective
areas) based on the 2016 Canadian census data.

characteristics (proportions of indigenous people, immigrants, low-education, and median household income) obtained from
the 2016 Canadian census. The proportion of indigenous people is the percentage of the population reporting indigenous status
in 2016. The proportion of immigrants is the percentage of the population reporting in 2016 that they immigrated to Manitoba
from outside Canada since 1961. The low-education rate is the proportion of persons 15+ who have not graduated high school.
So, we consider these four sociodemographic factors as area-level covariates in Model 1 and Model 2 which are defined in (3)
and (4), respectively. The sociodemographic characteristics of the 59 areas in Manitoba based on 2016 Canadian Census data,
are shown in Figure 2.
The first case in 2017 was assessed on January 03. Subsequent weekly assessments took place from January 03, 2017 to October
16, 2018. Therefore for our discrete-time model framework, January 03, 2017 was set as t = 1, January 10, 2017 was set as t = 2,
up to the last observation on October 16, 2018 as t = 94. Thus, each time increment represents 7 days. Studies have reported that
TB patients are no longer infectious after 2 weeks of treatment (Riley et al,43 Rouillon et al44). So, we set the infected period to
be 
I = 2 (i.e., 14 days). At each area and at a given time, if an individual is diagnosed as TB patient we consider he/she as an
infectious individual and also susceptible individuals are defined as individuals which have not infected until that given time.
Table 1 shows the estimate of model parameters for Model 1 and Model 2 along with their corresponding SEs. The estimated

coefficient in Table 1 for sex shows a significant relationship between sex and TB infection. Also, as expected, areas with an
increasing proportion of indigenous and immigrant rates have higher incidence of TB. On the other hand, areas with higher
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income are less at risk of TB. Further, according to the literature (e.g. see Wilson and Macdonald,45 Trovato et al46), indigenous
people tend to have lower-incomes than the average Canadian. Thus, we consider the interaction between indigenous and income
in these models. For both models, the estimated interaction coefficient shows that the indigenous people with a higher income
tend to be less at risk from TB. Note that, as can be seen from Figures 1b and 2c, we could not find a direct relationship between
low-education and TB incidence.

TABLE 1 Model parameters estimate (Est.), their standard errors (S.E.) and cAIC values for Model 1 and Model 2; TB data in
Manitoba, Canada, from January 2017 to October 2018.

Model 1 Model 2
Parameters Est. S.E. Est. S.E.

Intercept -2.987 0.649 -2.732 0.008
Sex

Male Ref. Ref.
Female -1.272 0.413 -2.094 0.009

Age group
> 25 -2.002 0.598 2.349 0.021
25 − 34 Ref. Ref.
35 − 44 -1.982 0.686 -9.364 0.009
45 − 54 -2.932 0.650 -2.798 0.084
55 − 64 -2.957 0.737 -2.796 0.202
<= 65 0.184 0.402 -3.870 0.328

Indigenous 11.97 1.045 6.202 0.016
Income -0.505 0.735 -1.113 0.010
Low-education -18.51 0.544 -10.35 0.017
Immigrant 1.556 0.617 0.091 0.020
Indigenous× Income -5.334 1.271 -1.278 0.004
� 2.073 0.172 2.397 0.007
� 0.585 0.077 0.674 0.090
� 0.751 0.240 0.691 0.241

cAIC 20436.84 18717.12

For each model, we also predict the average infectivity rates using the estimated parameters. The average infectivity rates for
the 59 LGAs in Manitoba over the whole time interval (94 time points) are displayed in Figures 3a and 3b. These maps show that
Winnipeg, which is the largest city in the province, has higher average infectivity rates than the other areas within the province
of Manitoba. In the following, to assess which model has a better fit to our TB data, we use conditional Akaike information
criterion (cAIC) of Donohue47. The cAIC is defined as cAIC = −2l(y|�̂) + 2� where l(y|�̂) is the maximum of log-likelihood
of observed real data set (y), �̂ denotes the real data parameter estimations and � is correction factor that can be calculated using
bootstrap method as � = E∗{l(y∗|�̂∗) − l(y|�̂∗)} where E∗ denotes the bootstrap expectation, y∗s are bootstrap data sets and
�̂∗s are the estimated values of parameters using bootstrap samples. The model with smaller cAIC is preferred. Table 1 shows
the results of cAIC for both models based on the 100 bootstrap samples. As we can see from this table, Model 2 fits better than
Model 1 to our data based on the cAIC. So, we can conclude that since average infectivity rates for Model 2 are higher than
the Model 1, each area with TB patients can transmit disease to their neighborhoods. Further, we make a comparison of the
efficiency of our proposed models (Model 1 and Model 2) to the naive model in which average incidence rates in each area are
defined as �z =

nz
T×Popz

, z = 1,… , 59,where nz denotes the number of TB incidence in zth area, T is the whole time interval and
Popz indicates the number of population at the zth area based on the census 2016. Average incidence rates over time for naive
model is plotted in Figure 3c. As it can be seen from Figures 3a, 3b and 3c, the infectivity rates using our proposed approach
are different from the naive model as the Models 1 and 2 smooth the incidence rates and in particular areas with low number of
cases. We further investigate the performance of the proposed approach in the simulation study.
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(a) Model 1 (b) Model 2 (c) Naive model

FIGURE 3 Predicted average rate of infectivity of Model 1 and Model 2 as well average of incidence rate of infectivity for naive
model for TB data in Manitoba, Canada, from January 2017 to October 2018.

5 SIMULATION STUDY

In this section, we consider two distinct simulation scenarios. One has an irregular, and one a regular, areal structures. Under
the irregular scenario, epidemic data are generated based on the Winnipeg 12 local geographic areas (LGAs). An 8 × 8 grid is
used to define areas under the regular scenario. Simulation studies are conducted to evaluate performance of both the region
restricted Model (Model 1) and neighbourhood Model (Model 2) in terms of how well parameters are estimated, for the purpose
of identifying infectious disease dynamics.

5.1 Irregular grid
We first consider epidemic simulation within the 12 LGAs of Winnipeg. For each simulation, we simulate the locations of a
total of n = 230 individuals where the sample sizes for each of 12 LGAs are shown in Table 2. The location (i.e. latitude
and longitude) for each individual within each LGA is randomly drawn using a Generalized Random Tesselation Stratified
(GRTS) spatial sampling technique. The GRTS is implemented here using the package spsurvey in R. Figure 4 illustrates the
geographical location of the one generated sample of the individuals within each LGA.

TABLE 2 The number of sample at each LGA.

Area Sample Area Sample

St. James Assiniboia 25 River East 25
Assiniboine South 25 Seven Oaks 30

Ft. Garry 25 Inkster 10
St. Vital 25 Point Douglas 10

St. Boniface 20 Downtown 10
Transcona 15 River Heights 10
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St. James Assiniboia

Assiniboine South

Ft. Garry
St. Vital

St. Boniface

Transcona

River East

Seven Oaks

Inkster

Point Douglas

Downtown

River Heights

FIGURE 4 Geographical location of each sampled individual in 12 LGAs of Winnipeg, Manitoba, Canada.

For each model, 1000 epidemic data sets are generated. To start each simulated epidemic, one individual is randomly selected
as infectious in each LGA at t = 1. Here we set the maximum observed time point to be tmax = 20 and we assume that the
length of infectious period (
I ) is constant for all individuals and each individual is set to be infectious for 3 time units before
moving to the removed stage. The spatial random effects are generated from a multivariate normal distribution with mean 0
and covariance matrix �u =

[

�2
(

(1 − �)I + �D
)]−1

. Three different values are considered for �, � ∈ {0.10, 0.50, 0.90}. Three
different values of the spatial dependence parameters, � ∈ {0.20, 0.50, 0.80}, are also considered in order to represent different
strength of spatial correlation. In this simulation study, we consider the following two models with one area level covariate and
one individual level covariate

Model 1: P (i, z, t) = 1 − exp
(

− exp(� + �11Xi1 + �21Xz1 + uz)
∑

j∈I(t,z)
d−�ij

)

,

and

Model 2: P (i, z, t) = 1 − exp
(

− exp(� + �11Xi1 + �21Xz1 + uz)
∑

j∈I(t,z,�(z))
d−�ij

)

.

We use the uniform distribution between (0, 1) for generating Xi1 and Xz1 and set their corresponding coefficient values equal
to one (�11 = �21 = 1). The intercept is set to � = 0.40. Also, three different values for transmission parameter � ∈ {2, 2.50, 3}
are considered. dij is calculated using the great-circle distance matrix method, and the rdist.eartℎ function in the R package
spectralGP is used in this regard.
Tables 3 to 5 display the mean of the estimated coefficients for the intercept, individual and area level covariates, the trans-

mission parameter (�) and LCAR parameters (� and �) corresponding to Model 1, along with their standard errors (SEs) and
coverage rate (CR) for the 95% confidence intervals of the model parameters estimate. The SEs are calculated using the inverse
Fisher information matrix of the complete data using 1000 simulation runs. As it can be seen from these Tables, in general, the
model parameters estimates are unbiased for the Model 1. However, we have a slight overestimation for �, and in the case of
� = 0.5, the estimated parameters are better than the other scenarios. It appears that we only have under coverage in the case of
estimate of � = 0.10, however the CRs get closer to the nominal value of 0.95 for the � values of 0.50 and 0.90. Similar results
for Model 2 are observed which are reported in Tables B1 to B3 in Appendix B. For two Models 1 and 2, in order to determine
the areas with higher infectivity rates, we obtain the infectivity rates of infectious disease over time at each area according to
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(5). Among all combinations of aforementioned parameters, we only report the infectivity rate for the GD-ILMs with � = 2.50,
� = 0.90 and � = 0.50. The infectivity rate for other scenarios can be obtained similarly. Table 6 presents the mean of the aver-
age infectivity rate for each of 12 LGAs at time points 2 and 3 for this simulation study. Furthermore, the maps of infectivity
rates for Model 1 and Model 2 at two time points 2 and 3 are illustrated in Figures 5 and 6. As it can be seen from these figures,
Model 2 indicates a higher infectivity rate than the Model 1 at each time point. Also, for the both models, at the beginning of the
outbreak, some areas (Downtown, Inkster, Point Douglas and River Heights) have higher infectivity rates and disease have been
transmitted between neighboring areas over time. Such maps can be used to target high risk areas for infectious disease control.

TABLE 3 True value of parameters along with the average parameter estimates (Av.Est) and average standard errors of the
estimated parameters (Av.S.E.) across 1000 simulation runs for Model 1 in the case of irregular grid with different � and � but
� = 0.10.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.365 0.274 1.00 1.011 0.211 0.99 0.939 0.355 0.99 2.022 0.109 0.99 0.176 0.054 0.90 0.417 0.357 0.90
0.50 0.351 0.214 1.00 0.976 0.173 0.99 0.918 0.286 1.00 2.027 0.086 0.98 0.180 0.049 0.78 0.544 0.103 0.87
0.80 0.356 0.115 1.00 0.978 0.115 0.99 0.930 0.216 1.00 2.021 0.057 0.99 0.188 0.048 0.64 0.635 0.082 0.90

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.367 0.185 1.00 0.975 0.153 0.99 0.942 0.249 1.00 2.516 0.077 0.99 0.168 0.051 0.91 0.410 0.123 0.89
0.50 0.357 0.157 1.00 0.987 0.116 0.99 0.931 0.218 1.00 2.519 0.057 0.99 0.177 0.049 0.82 0.527 0.101 0.88
0.80 0.357 0.134 1.00 0.943 0.111 0.99 0.928 0.180 1.00 2.514 0.057 0.99 0.183 0.047 0.70 0.623 0.084 0.90

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.372 0.181 1.00 0.976 0.148 0.99 0.947 0.237 1.00 3.003 0.075 0.99 0.162 0.049 0.94 0.407 0.122 0.90
0.50 0.375 0.128 1.00 0.978 0.110 0.99 0.952 0.172 1.00 2.003 0.172 0.99 0.162 0.048 0.93 0.420 0.121 0.90
0.80 0.365 0.124 1.00 0.986 0.105 0.99 0.944 0.169 1.00 3.007 0.053 0.99 0.178 0.046 0.76 0.610 0.086 0.88

TABLE 4True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the estimated
parameters (Av.S.E.), and coverage rate (CR) for 95% confidence interval of the parameters estimate across 1000 simulation
runs for Model 1 in the case of irregular grid with different � and � but � = 0.50.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.382 0.062 1.00 0.964 0.065 0.97 0.978 0.076 0.99 1.993 0.034 0.99 0.561 0.034 0.99 0.371 0.070 0.93
0.50 0.388 0.058 0.99 0.962 0.060 0.98 0.985 0.070 0.99 1.991 0.033 0.99 0.633 0.034 0.96 0.514 0.064 0.92
0.80 0.384 0.062 1.00 0.976 0.062 0.98 0.976 0.073 0.99 1.991 0.035 0.99 0.679 0.034 0.91 0.642 0.059 0.93

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.389 0.063 1.00 0.982 0.067 0.98 0.977 0.077 0.99 2.493 0.037 0.98 0.571 0.037 0.98 0.349 0.071 0.95
0.50 0.389 0.058 1.00 0.978 0.061 0.98 0.991 0.071 0.99 2.494 0.035 0.98 0.639 0.034 0.96 0.531 0.064 0.93
0.80 0.385 0.060 1.00 0.980 0.062 0.99 0.977 0.072 0.99 2.488 0.036 0.98 0.669 0.034 0.91 0.648 0.058 0.93

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.389 0.063 1.00 0.985 0.068 0.98 0.981 0.079 0.99 2.989 0.040 0.99 0.569 0.036 0.98 0.373 0.070 0.95
0.50 0.392 0.059 1.00 0.995 0.063 0.98 0.985 0.073 0.99 2.992 0.038 0.98 0.648 0.035 0.94 0.533 0.065 0.93
0.80 0.388 0.061 1.00 0.984 0.063 0.98 0.982 0.074 0.99 2.983 0.039 0.98 0.681 0.034 0.90 0.654 0.058 0.93

5.2 Regular grid
In this part of simulation study, for each simulation, the epidemic is generated across a population of 640 individuals located
within landscape in which 64 areas are defined by an 8 × 8 lattice (10 individuals in each cell). The latitude (x) and longitude
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TABLE 5True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the estimated
parameters (Av.S.E.), and coverage rate (CR) for 95% confidence interval of the parameters estimate across 1000 simulation
runs for Model 1 in the case of irregular grid with different � and � but � = 0.90.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.392 0.072 1.00 0.984 0.074 0.99 0.997 0.089 0.98 1.991 0.043 0.98 1.023 0.073 0.97 0.406 0.081 0.91
0.50 0.392 0.072 1.00 0.995 0.073 0.98 0.981 0.087 0.99 1.992 0.043 0.99 1.122 0.072 0.93 0.582 0.076 0.90
0.80 0.388 0.055 1.00 0.991 0.057 0.98 0.978 0.066 0.98 1.980 0.033 0.98 1.200 0.055 0.90 0.704 0.053 0.94

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.387 0.047 1.00 0.998 0.051 0.98 0.985 0.058 0.99 2.485 0.030 0.99 1.033 0.052 0.96 0.402 0.057 0.91
0.50 0.390 0.047 1.00 0.988 0.050 0.97 0.982 0.058 0.99 2.492 0.030 0.99 1.144 0.051 0.93 0.586 0.053 0.90
0.80 0.391 0.052 1.00 0.986 0.056 0.98 0.990 0.064 0.98 2.487 0.034 0.98 1.198 0.054 0.90 0.697 0.052 0.93

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.396 0.047 1.00 0.991 0.051 0.98 0.987 0.058 0.98 2.987 0.033 0.98 1.048 0.053 0.95 0.415 0.057 0.90
0.50 0.398 0.048 1.00 0.985 0.052 0.98 0.995 0.060 0.99 2.986 0.033 0.99 1.163 0.055 0.94 0.563 0.056 0.90
0.80 0.388 0.050 1.00 0.992 0.055 0.98 0.979 0.063 0.98 2.982 0.035 0.98 1.201 0.054 0.90 0.690 0.051 0.93

TABLE 6 The average rate of infectivity for Model 1 and Model 2 in the case of irregular grid with � = 2.50, � = 0.90 and
� = 0.50.

Model 1 Model 2
Area Time 2 Time 3 Time 2 Time 3

St. James Assiniboia 0.135 0.304 0.254 0.380
Assiniboine South 0.136 0.306 0.222 0.386

Ft. Garry 0.103 0.235 0.179 0.352
St. Vital 0.117 0.262 0.205 0.377

St. Boniface 0.141 0.301 0.279 0.400
Transcona 0.214 0.274 0.286 0.312
River East 0.097 0.229 0.182 0.373
Seven Oaks 0.072 0.199 0.132 0.310
Inkster 0.290 0.270 0.414 0.278

Point Douglas 0.392 0.280 0.527 0.234
Downtown 0.320 0.294 0.532 0.226

River Heights 0.263 0.283 0.451 0.279

(y) coordinates of the areas are given by all combinations (x, y) for x, y = 3, 6, 9,… , 24. One generated sample is ploted in
Figure 7a. For each model, 1000 data sets are generated. To start each simulated epidemic, one individual is randomly made
infectious in each cell at t = 1. Each epidemic is simulated over an epidemic length of tmax = 20 time units and parameters
are set to be � = 0.40, � ∈ {2, 3}, � = 0.50 and � ∈ {0.20, 0.50, 0.80}. Also, a fixed infectious period of 
I = 3 is assumed.
Moreover, in the similar manner as simulation based on the irregular grid, we use the uniform distribution between (0, 1) for
generating one individual level covariate and one areal level covariate and set their corresponding coefficient values equal to
one (�11 = �21 = 1). dij is calculated using Euclidean distance between the infectious individuals j and susceptible individual
i. The following models are fitted via the ECM algorithm presented in Section 3

Model 1: P (i, z, t) = 1 − exp
(

− exp(� + �11Xi1 + �21Xz1 + uz)
∑

j∈I(t,z)
d−�ij

)

,
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(a) Time 2 (b) Time 3

FIGURE 5 Average rate of infectivity for Model 1 in the case of � = 2.50, � = 0.90, � = 0.50, for two time points across 12
LGAs of Winnipeg, Manitoba, Canada.

(a) Time 2 (b) Time 3

FIGURE 6 Average rate of infectivity for Model 2 in the case of � = 2.50, � = 0.90, � = 0.50, for two time points across 12
LGAs of Winnipeg, Manitoba, Canada.

and

Model 2: P (i, z, t) = 1 − exp
(

− exp(� + �11Xi1 + �21Xz1 + uz)
∑

j∈I(t,z,�(z))
d−�ij

)

.

The simulation results of the Model 1 and Model 2 are shown in Table 7. This table report the mean of the estimated parameters
across the 1000 simulation runs with corresponding standard deviations and CR for the 95% confidence intervals of the model



Amiri ET AL 17

TABLE 7True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the estimated
parameters (Av.S.E.), and coverage rate (CR) for 95% confidence interval of the parameters estimate across 1000 simulation
runs for Model 1 and Model 2 in the case of regular grid with different � and � but � = 0.50.

� = 2 � = 3
Model 1 Model 2 Model 1 Model 2

Par. True Est. S.E. C.R. Est. S.E. C.R. Est. S.E. C.R. Est. S.E. C.R.
� 0.40 0.359 0.180 0.97 0.360 0.227 0.98 0.353 0.183 0.98 0.359 0.204 0.97
�11 1.00 0.967 0.234 0.97 0.992 0.277 0.99 1.001 0.235 0.99 0.982 0.260 0.98
�21 1.00 0.962 0.246 0.98 1.016 0.294 0.99 0.982 0.246 0.99 0.965 0.274 0.98
� 1.940 0.148 0.95 1.983 0.190 0.98 2.952 0.169 0.98 2.951 0.187 0.97
� 0.50 0.510 0.005 0.96 0.511 0.070 0.95 0.509 0.005 0.94 0.506 0.070 0.95
� 0.20 0.251 0.141 0.98 0.256 0.141 0.97 0.252 0.141 0.97 0.261 0.141 0.98
� 0.40 0.329 0.178 0.95 0.390 0.228 0.98 0.357 0.183 0.97 0.329 0.209 0.98
�11 1.00 0.964 0.232 0.95 0.991 0.281 0.98 0.980 0.234 0.98 1.000 0.261 0.98
�21 1.00 0.963 0.242 0.96 0.981 0.297 0.99 0.967 0.244 0.98 1.004 0.275 0.98
� 1.902 0.152 0.94 1.976 0.201 0.97 2.917 0.175 0.97 2.947 0.199 0.98
� 0.50 0.530 0.066 0.97 0.529 0.063 0.96 0.527 0.063 0.97 0.531 0.063 0.98
� 0.50 0.510 0.205 0.90 0.526 0.202 0.90 0.515 0.202 0.90 0.512 0.204 0.91
� 0.40 0.367 0.180 0.96 0.369 0.229 0.98 0.326 0.183 0.94 0.373 0.212 0.97
�11 1.00 0.991 0.233 0.97 0.977 0.280 0.97 0.965 0.232 0.96 0.976 0.262 0.97
�21 1.00 0.970 0.244 0.97 0.957 0.300 0.97 0.969 0.243 0.97 0.973 0.276 0.97
� 1.926 0.154 0.95 1.911 0.203 0.92 2.825 0.176 0.93 2.930 0.203 0.97
� 0.50 0.539 0.057 0.96 0.544 0.057 0.94 0.544 0.058 0.93 0.541 0.057 0.94
� 0.80 0.716 0.174 0.90 0.729 0.171 0.90 0.717 0.173 0.90 0.727 0.173 0.90

parameters estimate. Under the both models, the estimated parameters are generally unbiased. Similar to the irregular grid
subsection of simulation study, we can also provide infectivity rate for each cell for different time points.
In the following, we repeat the above simulation set-up to evaluate the edge effects of infected people near the boundaries

and compare the efficiency of the both Model 1 and Model 2 in terms of their accuracy in estimating model parameters. To that
end, we generated the individual locations near the boundaries. One generated sample is displayed in Figure 7b. The simulation
results of the Model 1 and Model 2 are shown in Table 8. This table reports the mean of the estimated parameters across the
1000 simulation runs with corresponding standard deviations and CR for the 95% confidence intervals of the model parameters
estimate. As expected, we can see fromTable 8 that in the all six simulation scenarios, the covariates coefficients and transmission
parameters have less biases and mean squared errors (defined as square of bias plus variance) under the Model 2 in comparison
with the Model 1. It is worth mentioning that, although our proposed models are complex, one of the practical desirable features
of the ECM algorithm in estimating of parameters is the computation time. In our simulation studies, the average running time
for each simulation on system equipped with a 2.3 GHz Intel Core i9 processor and 16 GB of memory is 8 minutes.
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FIGURE 7Geographical location of each sampled individual in 8 by 8 grid based on: (a) random generation, (b) edge generation.

6 DISCUSSION

GD-ILMs are an extension of the ILMs of Deardon et al12 that not only allow risk of infection to depend on the distance between
susceptible and infectious individuals, they also allow us to consider the effect of the spatial locations of individuals. We have
considered two GD-ILMs in terms of their ability to ascertain infectious disease dynamics: region-restricted (Model 1) and
neighbourhood-restricted (Model 2). In this paper, we have applied the ECM algorithm for computing the maximum likelihood
estimate of model parameters.
As a motivation of this paper, we have fitted both models to data that collected by Manitoba Health from January 2017 to

October 2018, on patients diagnosed with TB, in Manitoba, Canada. Our models included two individual-level covariates (age
and sex) and four area-level covariates (proportions of Indigenous people, immigrants, low-education, and median household
income). The results have shown that TB infection risk is significantly higher among men than women. In terms of age groups,
age-specific risks are highest in persons older than 65 years and younger than 25 years under Model 1 and Model 2, respectively.
Also, for both models, persons in age-groups 35-44, 45-54 and 55-64 are less at risk compared to the age-group 25-34. The risk
of TB transmission also increases in areas with higher proportions of Indigenous and immigrants. In addition, individuals in
areas with lower income are more at risk of TB. Moreover, values of spatial dependency parameter for Model 1 and Model 2 are
0.751 and 0.691, respectively, that shows significant and strong spatial correlation between areas. Predicted average infectivity
rate shows that Winnipeg, a city of consisting 23 LGAs, is more at risk of TB than other parts of the Manitoba. This information
about the geographical variation of TB will be communicated to policy makers at Manitoba Health for possible preventions in
those areas which are most at risk. Via simulation studies, we have evaluated the accuracy of GD-ILMs parameters estimate,
and shown how they can be used for predicting infectivity rates.
It is of interest to also study other diseases such as influenza which has similar transmission dynamics as TB. One can also

expend our proposed model to study SEIR (susceptible-exposed-infected-removed) or SEIRS (susceptible-exposed-infected-
removed-susceptible) that allow us to consider an infectious disease with a different transmission process. These are some of
the topics for future study.
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TABLE 8True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the estimated
parameters (Av.S.E.), and coverage rate (CR) for 95% confidence interval of the parameters estimate across 1000 simulation
runs for Model 1 and Model 2 in the case of regular grid for considering edge effect with different � and � but � = 0.5.

� = 2 � = 3
Model 1 Model 2 Model 1 Model 2

Par. True Est. S.E. C.R. Est. S.E. C.R. Est. S.E. C.R. Est. S.E. C.R.
� 0.40 0.324 0.181 0.94 0.342 0.226 0.96 0.323 0.191 0.97 0.379 0.222 0.99
�11 1.00 0.937 0.219 0.94 0.969 0.284 0.97 0.985 0.225 0.98 0.983 0.276 0.99
�21 1.00 0.936 0.227 0.95 0.973 0.301 0.97 0.972 0.233 0.98 0.980 0.291 0.99
� 1.935 0.124 0.94 1.952 0.150 0.96 2.958 0.146 0.97 2.977 0.164 0.99
� 0.50 0.509 0.005 0.95 0.511 0.005 0.95 0.506 0.005 0.95 0.508 0.005 0.95
� 0.20 0.257 0.030 0.98 0.256 0.030 0.98 0.261 0.031 0.98 0.259 0.031 0.97
� 0.40 0.300 0.179 0.91 0.329 0.231 0.95 0.311 0.188 0.96 0.365 0.223 0.98
�11 1.00 0.936 0.214 0.93 0.956 0.283 0.96 0.973 0.220 0.97 0.994 0.272 0.99
�21 1.00 0.932 0.222 0.93 0.963 0.299 0.96 0.964 0.227 0.97 0.981 0.286 0.98
� 1.893 0.126 0.91 1.935 0.161 0.95 2.918 0.146 0.96 2.960 0.171 0.98
� 0.50 0.531 0.004 0.97 0.532 0.004 0.97 0.527 0.004 0.97 0.530 0.004 0.97
� 0.50 0.511 0.041 0.90 0.520 0.041 0.91 0.517 0.041 0.90 0.517 0.042 0.91
� 0.40 0.306 0.179 0.91 0.354 0.233 0.95 0.254 0.186 0.93 0.349 0.223 0.97
�11 1.00 0.928 0.213 0.91 0.951 0.283 0.95 0.965 0.219 0.94 0.970 0.271 0.97
�21 1.00 0.931 0.221 0.92 0.957 0.299 0.95 0.953 0.226 0.94 0.962 0.285 0.98
� 1.863 0.126 0.90 1.909 0.163 0.92 2.844 0.144 0.93 2.933 0.173 0.97
� 0.50 0.541 0.003 0.95 0.544 0.003 0.95 0.533 0.003 0.96 0.537 0.003 0.96
� 0.80 0.721 0.030 0.91 0.728 0.029 0.91 0.747 0.030 0.96 0.750 0.030 0.95
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APPENDIX

A VARIANCE-COVARIANCE OF MODEL PARAMETERS ESTIMATE

The asymptotic covariance matrix of the ML estimator can be approximated by the inverse of the complete Fisher information
matrix Icom(�̂; yc) that can be defined as

Icom(�̂; yc) = −E
[ )2

)�)�⊤L(�; yc)|yo,�
]

|

|

|�=�̂
.

In our model, the elements of Icom(�̂; y) are computed as follows

Icom(�̂; �̂) = −
)2E

[

L(�; yc)|yo,�
]

)�2
|

|

|�=�̂
,
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)2E

[

L(�; yc)|yo,�
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)�2
|

|

|�=�̂
,
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)2E

[
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]

)�1)�⊤1

|

|

|�=�̂
,

Icom(�̂2; �̂2) = −
)2E

[
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|

|

|�=�̂
,

Icom(�̂; �̂) = −
)2E

[
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]

()�)2
|

|

|�=�̂
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and

Icom(�̂; �̂1) =
T
∑

t=1

∑

i∈S(t+1)

m
∑

z=1
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⊤
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B SIMULATION RESULTS FOR THE MODEL 2 IN THE IRREGULAR GRID
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TABLE B1 True value of parameters along with the average parameter estimates (Av.Est) and average standard errors of the
estimated parameters (Av.S.E.) across 1000 simulation runs for Model 2 in the case of irregular grid with different � and � but
� = 0.10.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.353 0.257 1.00 0.950 0.209 1.00 0.922 0.346 1.00 2.031 0.105 0.99 0.163 0.051 0.92 0.401 0.129 0.86
0.50 0.342 0.184 1.00 0.935 0.156 0.99 0.903 0.227 1.00 2.050 0.078 0.99 0.172 0.046 0.83 0.562 0.105 0.87
0.80 0.318 0.146 1.00 0.949 0.105 0.99 0.874 0.191 0.99 2.053 0.053 0.99 0.183 0.009 0.63 0.682 0.058 0.90

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.358 0.164 1.00 0.924 0.141 1.00 0.935 0.220 0.99 2.522 0.068 0.99 0.160 0.049 0.91 0.415 0.125 0.86
0.50 0.338 0.116 1.00 0.928 0.108 1.00 0.900 0.157 0.99 2.538 0.053 0.99 0.171 0.046 0.83 0.558 0.102 0.87
0.80 0.319 0.122 1.00 0.937 0.103 0.99 0.877 0.165 1.00 2.558 0.049 0.99 0.179 0.044 0.68 0.672 0.072 0.90

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.10
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.365 0.187 1.00 0.968 0.140 1.00 0.946 0.260 1.00 3.024 0.069 0.99 0.162 0.050 0.93 0.399 0.124 0.87
0.50 0.339 0.115 1.00 0.930 0.106 0.99 0.905 0.159 1.00 3.032 0.045 0.99 0.167 0.045 0.83 0.560 0.098 0.87
0.80 0.325 0.109 1.00 0.945 0.101 0.99 0.885 0.152 1.00 3.047 0.049 0.99 0.176 0.042 0.68 0.686 0.076 0.93

TABLE B2 True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the esti-
mated parameters (Av.S.E.) and coverage rates of estimated 95% confidence intervals (C.R) across 1000 simulation runs for
Model 2 in the case of irregular grid with different � and � but � = 0.50.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.365 0.074 1.00 0.948 0.068 0.97 0.934 0.081 0.99 1.998 0.039 0.99 0.609 0.037 0.96 0.404 0.069 0.91
0.50 0.370 0.072 1.00 0.962 0.065 0.98 0.951 0.079 0.99 1.998 0.038 0.99 0.662 0.035 0.94 0.538 0.064 0.91
0.80 0.372 0.053 1.00 0.956 0.048 0.98 0.951 0.056 0.99 1.998 0.028 0.99 0.710 0.026 0.90 0.654 0.042 0.92

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.380 0.046 1.00 0.962 0.046 0.97 0.958 0.054 0.99 2.495 0.026 0.99 0.577 0.025 0.98 0.378 0.049 0.92
0.50 0.386 0.045 1.00 0.976 0.043 0.98 0.977 0.051 0.99 2.501 0.025 0.99 0.647 0.024 0.96 0.529 0.045 0.92
0.80 0.379 0.045 1.00 0.985 0.044 0.97 0.969 0.052 0.98 2.494 0.026 0.99 0.678 0.023 0.90 0.664 0.041 0.93

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.50
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.385 0.044 1.00 0.984 0.046 0.98 0.965 0.053 0.99 2.992 0.026 0.98 0.573 0.025 0.98 0.365 0.049 0.94
0.50 0.383 0.041 1.00 0.986 0.043 0.98 0.985 0.050 0.99 2.992 0.025 0.99 0.629 0.024 0.95 0.536 0.046 0.94
0.80 0.382 0.042 1.00 0.977 0.044 0.98 0.975 0.051 0.99 2.993 0.026 0.99 0.664 0.024 0.91 0.649 0.042 0.95

TABLE B3 True value of parameters along with the average parameter estimates (Av.Est), average standard errors of the esti-
mated parameters (Av.S.E.) and coverage rates of estimated 95% confidence intervals (C.R) across 1000 simulation runs for
Model 2 in the case of irregular grid with different � and � but � = 0.90.

� �11 �21 � � �
True 0.40 1.00 1.00 2.00 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.383 0.089 1.00 0.971 0.082 0.97 0.969 0.095 0.98 1.988 0.050 0.99 1.056 0.077 0.96 0.443 0.085 0.90
0.50 0.392 0.093 1.00 0.968 0.083 0.98 0.962 0.100 0.98 1.976 0.051 0.99 1.140 0.077 0.92 0.591 0.080 0.90
0.80 0.393 0.075 1.00 0.962 0.068 0.97 0.967 0.081 0.97 1.984 0.042 0.99 1.193 0.060 0.90 0.710 0.059 0.95

� �11 �21 � � �
True 0.40 1.00 1.00 2.50 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.390 0.055 1.00 0.992 0.055 0.98 0.990 0.063 0.98 2.485 0.033 0.99 1.062 0.054 0.96 0.420 0.058 0.90
0.50 0.389 0.057 1.00 0.977 0.055 0.97 0.993 0.065 0.99 2.487 0.034 0.99 1.155 0.054 0.93 0.588 0.056 0.90
0.80 0.389 0.062 1.00 0.983 0.061 0.99 0.980 0.072 0.98 2.487 0.037 0.99 1.189 0.058 0.90 0.684 0.055 0.92

� �11 �21 � � �
True 0.40 1.00 1.00 3.00 0.90
� Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R. Av.Est. Av.S.E. C.R.
0.20 0.387 0.049 1.00 0.997 0.051 0.98 0.981 0.059 0.98 2.984 0.031 0.99 1.035 0.051 0.95 0.412 0.056 0.91
0.50 0.389 0.050 1.00 0.988 0.052 0.98 0.985 0.060 0.98 2.983 0.033 0.99 1.134 0.052 0.94 0.566 0.056 0.90
0.80 0.388 0.055 1.00 0.986 0.058 0.99 0.985 0.067 0.98 2.986 0.036 0.99 1.185 0.055 0.90 0.697 0.053 0.94
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