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Abstract: In survey sampling, policy decisions with respect to the allocation of resources to sub-

groups of a population depend on reliable predictors of their underlying parameters. However,

in some subgroups, called small areas due to small sample sizes relative to the corresponding

population sizes, the information needed to estimate reliable predictors is typically not available.

Consequently, coarser scale data is used to predict the characteristics of the small areas. Mixed

models are the primary tools in small area estimation (SAE) to also borrow information from

alternative sources (e.g., previous surveys, administrative, and census datasets). In many circum-

stances, the small area predictors are associated with their locations. For instance, in the case of

chronic disease or cancer (e.g., esophageal cancer), it is important for policy makers to under-

stand the spatial patterns of disease in order to determine small areas with high risk of disease and

establish prevention strategies. The literature concerning SAE assuming spatial random effects

is sparse and what is available is mostly in the context of spatial linear mixed models. In this
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paper, small area models are proposed in the class of spatial generalized linear mixed models to

predict small area predictors as well as the second-order unbiased mean squared prediction errors

estimation of small area predictors using Taylor expansion and parametric bootstrap approaches.

Evaluation of the performance of the proposed approach is completed through simulation studies

and by a real application of the models to an esophageal cancer dataset in Minnesota, USA. The
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1. INTRODUCTION

Sample surveys are administered with the intention of gaining information to

provide reliable estimates for the finite population characteristics, such as to-

tals or means. The total sample size determines the approaches used to compose

these estimators (direct survey estimators). Over the past few decades, there has

been a growing need to use the same sample survey data to get estimations for

sub-populations, such as counties or gender-age groups. In the literature, these

sub-populations for which reliable estimations are required are called small ar-

eas due to small sample sizes relative to the corresponding population sizes.

However, these small areas result in traditional area-specific direct estimators

with inadequate precision. Survey researchers are developing methods to pro-

vide more reliable estimations for small areas since policy decisions regarding
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the implementation of specific projects are often based on using estimations of

the underlying characteristics.

Nowadays, small area estimation (SAE) is commonly used in the planning of

health, social and other services, and for allocating government funds in Canada,

the United States of Americans (USA), and many European countries. Model

based estimators (Pfeffermann, 2013; Rao & Molina, 2015; Jiang, 2017, Chap.

4) have been proposed to borrow strength from other sources such as administra-

tive, survey, and census datasets. Linear mixed models (LMM) (Searle, Casella,

& McCulloch, 2006) and generalized linear mixed models (GLMM) (McCul-

loch & Searle, 2001) are the main models used for SAE. Specifically, small area

models can be categorized into two broad types. The first type is area-level mod-

els, which relate small area direct estimates to the area-specific covariates. These

models are typically used when unit-level data are unavailable. The second type

is unit-level models, which relate the unit values of a study variable to the asso-

ciated unit-level covariates with known area means and area-specific covariates.

Rao & Molina (2015) gave an extensive review of model-based small area esti-

mation under area-level and unit-level models.

Most of the models in SAE assume the small areas are independent from one

another. However, the small area parameters are associated with their locations

in many situations. For instance, when dealing with chronic disease or cancer,

it is important for policy makers (and the public) to understand the spatial pat-
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terns of a disease in order to determine small areas with a high risk of disease

so prevention strategies can be implemented. The literature concerning SAE as-

suming spatial random effects is limited. The spatio-temporal area-level models

in SAE were studied by Singh, Shukla, & Kundu (2005). Specifically, they em-

ployed the simultaneous autoregressive (SAR) model to explain the spatial ran-

dom effects, and to estimate the model parameters, they utilized the maximum

likelihood estimation (MLE) approach. They heuristically derived the second-

order mean squared prediction error (MSPE) of the empirical best linear unbi-

ased prediction (EBLUP) of the small area mean, and using Taylor expansion

they found the corresponding second-order unbiased estimator of the MSPE.

Recently, Chandra, Salvati, & Chambers (2017) studied non-stationary spatial

SAR models for small area count outcomes in the area-level model and heuris-

tically provided MSPE estimation of prediction of small area parameters using

Taylor expansion and parametric bootstrap methods. In the light of this work,

Chandra & Salvati (2018) also studied spatial SAR models for small area bino-

mial outcomes in the area-level model using penalized quasi-likelihood method

to estimate the model parameters and by also providing MSPE estimation of pre-

diction of small area parameters based on Taylor expansion. It is well-known that

the conditional spatial dependence parameter defined through the SAR model is

not consistent (Schabenberger & Gotway, 2004). A spatial area-level model was

studied by Molina, Salvati, & Pratesi (2009), where they found the EBLUP of
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the small area mean and used bootstrap MSPE estimators for the spatial EBLUP.

Recently, Torabi & Jiang (2019) studied the spatial area-level model and em-

ployed a conditional autoregressive (CAR) model to explain the spatial random

effects. They used the generalized weighted least squares procedure to estimate

the regression coefficients. The variance components, including CAR parame-

ters were estimated through the restricted maximum likelihood (REML). Here,

the CAR parameters are consistent unlike with the SAR model. They also rig-

orously obtained the MSPE of the EBLUP of the small area means and also

found the estimator of MSPE of the EBLUP of small area means. To the best of

our knowledge, in the context of SAE, in the literature there are no studies that

have rigorously obtained the MSPE of the empirical best prediction (EBP) of the

small area predictors and the estimator of the MSPE of the EBP of the small area

predictors through spatial GLMMs.

In the context of SAE, we propose a unified approach for Normal and non-

Normal responses with spatial patterns. More precisely, we produce the EBP of

small area predictors in Section 2, and in Section 3 we obtain the correspond-

ing MSPE. In Section 4, we use Taylor series expansion and parametric boot-

strap procedures to provide the second-order unbiased estimators of MSPE of

EBP of small area predictors. We implement our method using a real dataset of

esophageal cancer mortality in Minnesota, USA, from 1991 to 1998 in Section

5. The performance of the proposed approach is evaluated in Section 6 using two

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



6 Vol. xx, No. yy

simulation studies with Poisson and binomial responses. Finally, Section 7 pro-

vides some concluding remarks and the Appendix contains the proof of Theorem

1. Supplementary Materials contain other techincal details, an extra simulation

study in the case of Normal reponse, and R codes and corresponding files for the

simualtions and application conducted in this paper.

2. STATISTICAL MODEL

The basic area-level model in small area estimation can be described as follows.

Let yi be the variable of interest for the ith small area (i = 1, ...,m). The yi are

assumed to be independent conditional on latent variable ηi with the exponential

family probability density or mass function

f(yi|ηi, φ) = exp[{yiηi − a(ηi)}/φ+ b(yi, φ)], (1)

where a(·) and b(·) are known functions, and φ is the known scale parameter.

The latent variable ηi is modeled as

ηi = x>i β + z>i u,

and ηi = h[E(yi|u)], where h is a strictly increasing function, x>i is the i−th

row of known matrix X(m× p), α1 := β(p× 1) is a vector of unknown re-

gression coefficient, z>i is the i−th row of the identity matrix Z(m×m), and

u = (u1, ..., um)
> are spatial random effects from a multivariate Normal distri-
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bution u|α2 ∼MVN(0,Σu(α2)). The objective in small area estimation is to

make inferences on the small area predictors ηi or its variant.

To that end, we first need to obtain the conditional density of the latent vari-

able ηi which can be written as

g(ηi|yi,α) ∝ exp
{−η2i
2σ2

ηi

+
ηi(x

>
i β)

σ2
ηi

+ [yiηi − a(ηi)]/φ
}
, (2)

where σ2
ηi
= z>i Σuzi and α = (α>1 ,α

>
2 )
>. A Normal approximation, using the

Laplace approximation (Rue, Martino, & Chopin, 2009) centred around the point

η0i = argmaxηi f(yi|ηi, φ), to the probability function (2) is constructed by lin-

earizing the likelihood part of (2) at a fixed point η0i . The feasibility of this Nor-

mal approximation is evaluated through simulation studies in Section 6. We write

the following for each small area i(= 1, ...,m) :

[yiηi − a(ηi)] ≈ [yiη
0
i − a(η0i )] + (ηi − η0i )[yi − a′(η0i )]−

1

2
(ηi − η0i )2a′′(η0i ),

(3)

where the first and second derivatives can be written in a closed form. Insert-

ing (3) into (2), the conditional density of ηi has a Normal approximation with

conditional mean E(ηi|yi,α) and conditional variance var(ηi|yi,α), given by

E(ηi|yi,α) = x>i β + z>i ΣuZ
>R−1[l(y,η0)−Xβ] (4)
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and

var(ηi|yi,α) = z>i [Σu −ΣuZ
>R−1ZΣu]zi, (5)

where R = ZΣuZ
> + P,P is a diagonal matrix with entries Pi,i = φ/a′′(η0i ),

η0 = (η01, ..., η
0
m)
>, and l(yi, η

0
i ) = [yi − a′(η0i ) + η0i a

′′(η0i )]/a
′′(η0i ), (i =

1, ...,m).

When α is known, the best predictor of ηi is given by η̃Bi (α, yi) = η̃Bi =

E(ηi|yi,α) defined in (4). Moreover, the only sensible prediction variance for

ηi is given by E(η̃Bi − ηi)2 = var(ηi|yi,α) =: g1i(α). By estimating the model

parameters α, called α̂, the EBP of ηi is given with replacing α by α̂ in (4) as

η̂EBi = η̃Bi (α̂, yi){1 +Op(m
−1)}, (6)

noting that we estimate the model parameters α using maximum likelihood es-

timation (MLE) approach via data cloning (DC) (Lele, Nadeem, & Schmuland,

2010). We breifly explain the DC approach below.

The DC method provides the MLE using the Bayesian computational ap-

proach. To understand the logic behind this approach, imagine a hypotheti-

cal situation where the observations y = (y1, . . . , ym)
> are repeated indepen-

dently by K different individuals, and all these individuals happen to obtain

exactly the same set of observations y. These K repeated data sets are de-
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noted by y(K) = (y>,y>, . . . ,y>)>. As a result, the likelihood function for

the combination of the data from these K independent experiments is given

by {L(α;y)}K = LK(α;y) where L(α;y) is the likelihood of the original ob-

served y. As shown by Lele, Nadeem, & Schmuland (2010), the likelihood func-

tion LK(α;y) has two important features: 1) the location of the maximum of

this function is exactly equal to the location of the maximum of L(α;y); 2) the

Fisher information matrix based on this likelihood is K times the Fisher infor-

mation matrix based on L(α;y).

Assuming the model is identifiable and that there is a unique global mode for

the likelihood function, we can write the posterior distribution of α conditional

on the data y(K) as

πK(α|y(K)) =
LK(α;y)π(α)

C(y(K))
, (7)

where π(α) is the the prior distribution and C(y(K)) =
∫
LK(α;y)π(α)dα is

the normalizing constant. Following Lele, Nadeem, & Schmuland (2010), we can

show that under some mild regularity conditions, as K becomes large, the poste-

rior distribution of
√
KΣ−1/2(α̂−α)|y(K) converges to a multivariate normal

distribution with mean 0 and covariance matrix I which is the identity matrix

with the dimension of α; noting that α̂ is the MLE and Σ is the inverse of the

Fisher information matrix for the MLE. Lele, Nadeem, & Schmuland (2010) also

provided various checks to determine the adequate number of clonesK based on

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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(7).

3. MEAN SQUARED PREDICTION ERROR APPROXIMATION

We now need to obtain the measure of variability of the η̂EBi . To that end, we

assume the following regularity conditions (referred to as RC later on) on the

estimator α̂ and the predictor η̃Bi (α, yi) for large m :

1) The dimension of α is bounded and the estimator α̂ satisfies that

(α̂−α) = Op(m
−1/2) and E|α̂−α| = O(m−1/2).

2) We have ηi = Op(1) and η̃Bi (α, yi) = Op(1) for i = 1, ...,m. In addition,

the estimator η̃Bi (α, yi) is continuously differentiable with respect to α, and

∂η̃Bi (α,yi)

∂α
= Op(1).

Theorem 1. Under the RC (1–2) and the model (1), a second-order approxi-

mation to the MSPE of the η̂EBi can be written as

MSPE(η̂EBi ) = g1i(α) + g2i(α) + o(m−1), (8)

where g1i(α) is given by (5) and g2i(α) = tr
{
E[(

∂η̃Bi (α,yi)

∂α
)(
∂η̃Bi (α,yi)

∂α
)>]E[(α̂−

α)(α̂−α)>]
}
.

The proof is deferred to Appendix.
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4. MEAN SQUARED PREDICTION ERROR ESTIMATION

4.1. Linearization Method

Since the approximated MSPE (8) is a function of unknown parameters α, it is

not computable. We now obtain the estimation of MSPE(η̂EBi ) which is second-

order unbiased in the sense that

E[mspe(η̂EBi )] = MSPE(η̂EBi ) + o(m−1). (9)

As shown in Theorem 1, the order of g2i(α) is O(m−1), so one can estimate

g2i(α) by g2i(α̂) unbiasedly up to second-order. To estimate g1i(α), the naive

estimator g1i(α̂) has a second-order bias due to g1i(α) = O(1). We can then use

a Taylor expansion about α for g1i(α) as follows:

g1i(α̂) = g1i(α) + (α̂−α)>
∂g1i(α)

∂α
+

1

2
(α̂−α)>

∂2g1i(α)

∂α∂α>
(α̂−α) + op(m

−1),

yielding that

E[g1i(α̂)] = g1i(α) + g11i(α) + g12i(α) + o(m−1),

where

g11i(α, yi) = [
∂g1i(α)

∂α
]>E(α̂−α)

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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and

g12i(α) =
1

2
tr
{
(
∂2g1i(α)

∂α∂α>
)E[(α̂−α)(α̂−α)>]

}
,

which are of the order O(m−1/2) and O(m−1) under the RC, respectively.

Theorem 2. Under the RC (1–2) and the model (1), a second-order correct

unbiased estimator of the MSPE of η̂EBi can be written as

mspe(η̂EBi ) = g1i(α̂)− g11i(α̂)− g12i(α̂) + g2i(α̂). (10)

It is well-known that the mspe based on the linearization method can take a

negative value (Prasad & Rao, 1990); in this case, one can replace the negative

value with a very small positive value. In Supplemnetray Materials (Section 1),

we derive the EB prediction and corresponding second-order unbiased MSPE

estimation of EBP of small area predictors for some popular distributions in ex-

ponential family (Normal, Poisson, and binomial) based on the above results.

4.2. Parametric Bootstrap Approach

We now obtain a nearly unbiased estimator of MSPE(η̂EBi ), in the sense of (9),

using the parametric bootstrap approach. We first generate u∗ = (u∗1, ..., u
∗
m)
>

from a multivariate Normal distribution with mean 0 and variance-covariance

Σu(α̂2) to establish η∗i = x>i β̂ + z>i u∗, (i = 1, ...,m). A bootstrap sample is

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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then generated from y∗i |(η∗i , α̂) ∼ f(y∗i |η∗i , α̂), i = 1, ...,m, noting that we con-

struct the estimator α̂∗ from the bootstrap sample (y∗1, ..., y
∗
m) with the same

method used to obtain the estimator α̂. We then obtain the EB prediction of

η∗i using the bootstrap dataset {(y∗i , xi); i = 1, ...,m} as η̂EB∗i = η̃Bi (α̂
∗, y∗i ) for

i = 1, ...,m. Hence, the bootstrap MSPE estimator of η̂EB∗i is given by

mspeboot1(η̂
EB
i ) = E∗{(η̂EB∗i − η∗i )2} ≡ ŵi, (11)

where E∗ denotes the bootstrap expectation.

We also provide a double bootstrap (Hall & Maiti, 2006) by drawing a second-

phase bootstrap sample from a given bootstrap sample using the bootstrap model

parameters given above. Following as above we draw the second-phase boot-

strap sample, from each first-phase bootstrap sample, to get second-phase boot-

strap MSPE as MSPE∗∗(η̂EB∗∗i ) = E∗∗{(η̂EB∗∗i − η∗∗i )2}, where E∗∗ denotes the

second-phase bootstrap expectation. We then have the following bootstrap MSPE

estimators proposed by Hall & Maiti (2006):

mspeboot2(η̂
EB
i ) ≈



2ŵi − v̂i ŵi ≥ v̂i

ŵiexp{−(v̂i − ŵi)/v̂i} ŵi < v̂i (12)

and

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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mspeboot3(η̂
EB
i ) ≈ ŵ2

i /v̂i, (13)

where v̂i = E∗[E∗∗{(η̂EB∗∗i − η∗∗i )2}]. In practice, we approximate ŵi by draw-

ing a large number, B1, of independent bootstrap samples. Similarly, we approx-

imate v̂i by drawing a large number, B2, of second-phase independent bootstrap

samples from each first-phase bootstrap sample.

5. APPLICATION

We use a non-Normal response data to evaluate performance of the proposed

approach. The data consists of the number of deaths due to esophagus cancer in

the years from 1991 to 1998 at the 87 counties (small areas) in Minnesota, USA

(Jin, Carlin, & Banerjee, 2005; Torabi, 2014). A spatial Poisson model is used

as this disease is assumed to be rare enough relative to the population in each

county. The model is then given by

yi ∼ Poisson(λi), i = 1, ..., 87, (14)

log(λi) = log(Ei) + β + z>i u,

where yi is the observed number of death due to esophagus cancer in county

i, Ei is the corresponding expected age-adjusted number of deaths, β is an
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intercept, z>i is the ith raw of the identity matrix Z,u are from proper CAR

model (see Sectoin 1 of the Supplementry Materials for more details of this

model) with parameters α2 = (λu, σ
2
u). Note that the expected number of deaths

(Ei) is calculated by Ei =
∑J

j=1Nijyj/Nj where Nij is the population at risk

for the ith county and age group j,Nj is the population at risk for the age

group j based on the USA Census 2000 dataset, and similarly yj is the number

of deaths for the age group j. The range of esophagus cancer cases during 7

years (1991–1998) is from 0 to 319 with mean and median of 15.99 and 8.00,

respectively. The range of standardized mortality ratio (yi/Ei) is from 0 to 2

with mean and median of 0.91 and 1.00, respectively.

We first fit the model (14) to the dataset and provide the model parameters

estimate and corresponding standard errors (Table 1). It appears that our data has

spatial patterns as the spatial model parameters are statistically significant. We

also fit the model with non-spatial random effects (λu = 0) to this dataset. As

shown in Table 1, we now get a non-significant value for the dispersion param-

eter. To evaluate the impact of ignoring the spatial random effects, we further

investigate it in the simulation study. We then provide the prediction of mortality

ratio as well as raw ratio (yi/Ei) of esophagus cancer in each county (Figure 1)

with corresponding MSPE estimation of log-ratio of esophagus cancer (Figure 2)

using the Taylor expansion and parametric bootstrap approaches; noting that in

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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TABLE 1: Model parameters estimates and corresponding standard errors using
MLE approach for the spatial and non-spatial Poisson models.

Parameter Spatial Model Non-spatial Model

Estimate Standard Error Estimate Standard Error

β -0.041 0.054 -0.062 0.043

σ2
u 0.012 0.005 0.032 0.019

λu 0.290 0.029 – –

this paper we consider B1 = 1000 and B2 = 100 as the first- and second-phase

of bootstrap samples, respectively.

As shown in Figure 1, our prediction ratios provide smooth estimates of raw

(naive) ratios. The effect of model-based approach to produce smoothed esti-

mates (Figure 1 b) in some counties in the central and northern parts of the

Minnesota is very clear compared to the naive method (Figure 1 a). In partic-

ular, some of these counties have relatively small population sizes compared to

the general population which clearly demonstrate the advantage of using spa-

tial mixed model. As shown in Figure 2, the MSPE estimation of the EB pre-

diction for the Taylor expansion approach (eq. (10)) is smaller than the other

approaches, and first-phase bootstrap approach (eq. (11)) is relatively smaller

than corresponding values of the second-phase bootstrap methods (eqs. (12) and

(13)). We further investigate performance of these estimators in the simulation

studies.
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Minnesota RR
<0.33
[ 0.33 , 0.80 )
[ 0.80 , 1.14 )
[ 1.14 , 1.50 )
[ 1.50 , 2.04 )
[ 2.04 , 2.61 )
>=2.61

(a) (b)

FIGURE 1: Raw (a) and EB prediction (b) of mortality ratio of esophagus
cancer in Minnesota, spatial Poisson model.

6. SIMULATION STUDY

In this section, we carry out simulation studies to evaluate performance of the

proposed approach. Two simualtion studeis in the cases of Poisson and binomial

responses are presented in this section, and third simualton study in the case of

Normal response is deffered to Section 2 of the Supplementary Materials.

6.1. Spatial Poisson Model

We conduct a simulation study to evaluate performance of the proposed approach

in the Poisson mixed model set-up. The spatial structure of the model is also

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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FIGURE 2: Boxplots of square root of mspe of log-ratio of esophagus cancer in
Minnesota, spatial Poisson model.

based on the Minnesota county map (Section 5). We assume that the data are

obtained from the following model:

yi ∼ Poisson(λi), i = 1, ..., 87,

log(λi) = log(ni) + β + z>i u,

where ni = 30 is an offset, β is an intercept, z>i is the ith raw of the iden-

tity matrix Z,u are generated from the proper CAR model with parameters

α2 = (λu, σ
2
u)
>. We first generate R = 1000 independent samples u(r), (r =

1, ..., R), from the proper CAR model with parameters λu = 0.6, σ2
u = 0.0001,
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and then generate y
(r)
i ∼ Poisson(λ

(r)
i ), (i = 1, . . . , 87; r = 1, . . . , R), where

log(λ
(r)
i ) = log(ni) + β + z>i u(r) with β = 0.001. For each simulated run, we

find the MLE of the model parameters to provide the prediction of the small area

log-rates η(r)i = β + z>i u(r), (r = 1, . . . , R), using η̂EB(r)
i = β̂(r) + z>i E(u

(r)|y)

as in (6). We also calculate the empirical MSPE (EMSPE) of η̂EBi as

EMSPE(η̂EBi ) =
1

R

R∑
r=1

[η̂
EB(r)
i − η(r)i ]2,

and the relative bias (RB) of an estimator of the MSPE, say mspe, as

RB[mspe(η̂EBi )] =
{ 1

R

R∑
r=1

mspe(r)(η̂EBi )− EMSPE(η̂EBi )
}
/EMSPE(η̂EBi ),

where η̂
EB(r)
i and η

(r)
i , and mspe(r)(η̂EBi ) are the values of η̂EBi , ηi, and

mspe(η̂EBi ) for the rth simulation batch, respectively. Note that mspe(η̂EBi ) is

calculated for the both Taylor expansion and bootstrap approaches.

We also evaluate the performance of the non-spatial model (λu = 0) in this

simulation study. The result of EMSPE of η̂EBi is reported in Figure 3. As shown

in Figure 3, the values of EMSPE are smaller for the proposed approach com-

pared to the non-spatial model. The results of absolute RB (ARB) of mspe of η̂EBi

for the Taylor expansion and bootstrap approaches are also reported in Figure 4.

The proposed approach using Taylor expansion performs very well in terms of

ARB (< %8); noting that the first-phase bootstrap also performs better than the

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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FIGURE 3: Boxplots of the EMSPE of η̂EBi , spatial and non-spatial Poisson
models.
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FIGURE 4: Boxplots of percent absolute RB of mspe of η̂EBi , spatial Poisson
model.

both second-phase bootstrap methods in terms of RB of mspe of η̂EBi .
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6.2. Spatial Binomial Model

We also conduct a simulation study to evaluate performance of the proposed

approach in the binomial mixed model set-up. The spatial structure of the model

is also based on the Minnesota county map (Section 5). We assume that the data

are obtained from the following model:

yi ∼ Binomial(ni, pi), i = 1, ..., 87,

log(
pi

1− pi
) = β0 + β1xi + z>i u,

where ni = 1, β0 = β1 = 0.1, and xi is generated from uniform distri-

bution between 0 and 1 and fixed during the simulation study. We

first generate R = 1000 independent samples u(r), (r = 1, ..., R), from

the proper CAR model with parameters λu = 0.5, σ2
u = 0.0001, and

then generate y
(r)
i ∼ Binomial(ni, p

(r)
i ), (i = 1, . . . , 87; r = 1, . . . , R),

where p
(r)
i = eβ0+β1xi+z

>
i u(r)

1+eβ0+β1xi+z
>
i

u(r) . For each simulated run, we find the

MLE of the model parameters to provide the prediction of the small

area logit η
(r)
i = β0 + β1xi + z>i u(r), (r = 1, . . . , R), using η̂

EB(r)
i =

β̂
(r)
0 + β̂

(r)
1 xi + z>i E(u

(r)|y) as in (6). We also calculate the EMSPE(η̂EBi )

and the RB[mspe(η̂EBi )] similar to the spatial Poisson model (Section 6.1).
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FIGURE 5: Boxplots of the EMSPE of η̂EBi in the cases of spatial, non-spatial,
and CS Binomial models.

We also evaluate the performance of the non-spatial model (λu = 0) and the

SAR spatial model, developed for the binomial model by Chandra & Salvati

(2018), called CS model, in this simulation study. The results of EMSPE of η̂EBi

are reported in Figure 5. As shown in Figure 5, the range of EMSPE values is

smaller for the proposed approach compared to the non-spatial and CS models

while the performance of the CS and non-spatial models is very similar. In par-

ticular, the EMSPE values of non-spatial and CS models are %23 larger than

the corresponding values of the spatial model in some areas, noting that the CS

model is based on the spatial SAR unlike the proposed model which is based on

the spatial CAR. The results of ARB of mspe of η̂EBi for the Taylor expansion

and bootstrap approaches are also reported in Figure 6. The proposed approach

using Taylor expansion performs very well in terms of ARB (< %8); noting that

the first-phase bootstrap also performs better than the both second-phase boot-

strap methods in terms of RB of mspe of η̂EBi .
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FIGURE 6: Boxplots of percent absolute RB of mspe of η̂EBi , spatial Binomial
model.

7. DISCUSSION

Generalized linear mixed models (GLMMs), assuming small areas are inde-

pendent from each other, have been previously used to derive empirical best

prediction (EBP) of small area predictors as well as the corresponding second-

order unbiased estimator of mean squared prediction errors (MSPE) of the EBP

of small area predictors. However, there are many applications that the small

area predictors are related to their locations. For instance, accurate statistical

information concerning the wellbeing of people at regional level is needed to

target the policies or programs aimed at reducing poverty in poorer regions;

the estimation of poverty at regional or local level is then a really important

task for policy making (Marhuenda, Molina, & Morales, 2013). As another
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application, among many others, is when health agencies (e.g., policy making)

need to know the spatial patterns of a rare disease (e.g., chronic disease or can-

cer) to identify small areas with high risk of disease to implement the prevention.

We have proposed a unified approach for Normal and non-Normal responses

with spatial patterns in the context of small area estimation. In particular, we

have provided EBP of small area predictors and derived second order approx-

imation to the MSPE of EBP of small area predictors. We have also obtained

second-order unbiased MSPE estimation of EBP of small area predictors by

Taylor expansion as well as parametric bootstrap approaches. We have shown

by simulation studies (and a real data application of esophagus cancer dataset in

Minnesota) that the proposed approach works very well in terms of small area

predictors and their precisions.

APPENDIX

Proof of Theorem 1

We can write

MSPE(η̂EBi ) = E{(η̂EBi − ηi)2}

= E{(η̃Bi − ηi)2}+ E{(η̂EBi − η̃Bi )2}
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= g1i(α) + E{(η̂EBi − η̃Bi )2} ,

noting that E[(η̃Bi − ηi)(η̂EBi − η̃Bi )] = E[(η̂EBi − η̃Bi )E(η̃Bi − ηi|yi)] = 0. It is

also noted that

η̂EBi = η̃Bi (α, yi) + [
∂η̃Bi (α

?, yi)

∂α
]>(α̂−α),

where α? is between α and α̂. Thus, we obtain

E{(η̂EBi − η̃Bi )2} = E[{(α̂−α)>
∂η̃Bi (α, yi)

∂α
}2] + o(m−1)

= tr
{
E[(

∂η̃Bi (α, yi)

∂α
)(
∂η̃Bi (α, yi)

∂α
)>(α̂−α)(α̂−α)>]

}
+ o(m−1)

= tr
{
E[(

∂η̃Bi (α, yi)

∂α
)(
∂η̃Bi (α, yi)

∂α
)>]E[(α̂−α)(α̂−α)>]

}
+ o(m−1),

which completes the proof of Theorem 1.
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SUPPLEMENTARY MATERIALS

The Supplementary Materials contain three sections. Section 1 provides the

detail of derivations of the EB prediction and corresponding second-order

unbiased MSPE estimation of EBP of small area predictors for three popular

responses in exponential family (Normal, Poisson, and binomial). Section 2

provides a simulation study in the case of spatial Normal model. Section 3

provides R codes and corresponding “readme” files for the simulations and

application conducted in this paper.
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