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Abstract In survey sampling, policy decisions regarding allocation of re-
sources to subgroups, called small areas, or determination of subgroups with
specific properties in a population are based on reliable estimates of small
area parameters. However, the information is often collected at a different 10

scale than these subgroups. Hence, we need to estimate characteristics of sub-
groups based on the coarser scale data. One of the main interests in small
area estimation is to produce an ensemble of small area parameters whose
distribution across small areas is close to the corresponding distribution of
true parameters. In this paper, we consider the unit-level nested error linear 15

regression model which is commonly used in small area estimation. We study
the case where the covariate in the model is assumed to have measurement
error. To study this complex model, we propose to use constrained Bayes
method to estimate the true covariate in order to build the small area Bayes
predictor. We also provide some measures of performance such as sensitivity, 20

specificity, and positive/negative predictive values for the constructed Bayes
predictor. We estimate the model parameters using the method of moments
and Bayesian approach to get corresponding empirical and hierarchical Bayes
predictors. The performance of our proposed approach is evaluated through a
simulation study and a real data application. 25
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1. Introduction

Sample surveys are commonly conducted to provide reliable estimates of the
finite population parameters such as totals, means, counts, quantiles, etc.30

In recent years, there has been increasing demand to get such estimates for
sub-populations (small areas), such as counties or gender-age groups, due to
their growing use in formulating policies and programs, allocating government
funds, regional planning, marketing decisions at local level, and other uses.
However, sample sizes within areas are often too small to warrant the use of35

the traditional area-specific direct estimates.

To produce reliable estimates of characteristics of interest for small areas and
obtain measures of error associated with each estimate, different methods have
been proposed in the literature. These include, among others, the use of syn-
thetic, composite and/or model-based estimators (Datta et al, 2011; Jiang40

and Lahiri, 2006; Jiang, 2010; Rueda et al, 2010; Rao and Molina, 2015).
Model-based estimators borrow strength from related areas by defining a set
of assumptions to model the stochastic behaviour of the variables in the un-
derlying population and by introducing random effects into the model. In the
context of linear mixed models, such small area models may be classified into45

two broad types: (i) Area-level models that relate small area direct estimates
to area-specific covariates; such models are used if unit-level data are not avail-
able. (ii) Unit-level models that relate the unit values of a study variable to
associated unit-level covariates with known area means and area-specific co-
variates. A comprehensive account of model-based small area estimation under50

area-level and unit-level models is given by Rao and Molina (2015). In this pa-
per, we focus on an empirical Bayes estimation of small area means under
unit-level nested error linear regression model with measurement errors in the
covariate values.

Battese et al (1988) and Prasad and Rao (1990) used a unit-level nested error55

linear regression model where the covariates are not subject to measurement
errors. However, there are many circumstances where the covariates are sub-
ject to measurement error. In a pioneering paper, Ghosh and Sinha (2007),
henceforth abbreviated GS, proposed a nested error linear regression model
with an area-level covariate subject to measurement error. The Bayes predic-60

tors of small area means were obtained and consequently, the pseudo-Bayes
(PB) and pseudo empirical Bayes (PEB) predictors were constructed by us-
ing the method of moments (MM) estimator of the true area-specific covariate
and estimates of the model parameters. Analytically and also using simulation
studies, GS showed the superiority of their method (in terms of the conver-65

gence of the PEB predictors of small area means to PB predictors) over the
naive predictors of small area means that are obtained by simply neglecting
the measurement error. Datta et al (2010) proposed a new PB predictor of
the small area mean by using the maximum likelihood estimate (MLE) of the
true area-specific covariate. Their proposed PEB predictor improved the one70

proposed by GS in terms of the relative bias of the estimator of the mean
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squared prediction error (MSPE). Torabi (2011) extended the model given by
GS using survey weights of the response values.

Torkashvand et al (2015) proposed another variant of the PB predictor of the
small area mean using the James-Stein (JS) estimate of the area-level covari- 75

ate. They also showed that their new PEB predictor outperforms previously
proposed predictors using the MM and the MLE in terms of the MSPE and
relative bias.

A drawback of the proposed JS estimator in Torkashvand et al (2015), and es-
sentially any other method which uses the Bayesian and/or empirical Bayesian 80

methodology to estimate the true area-specific covariate, is that the empirical
histogram of these model-based predictors is underdispersed as an estimate
of the histogram of the true small area means; noting that the corresponding
predictors overshrink the direct estimates to their regression estimates (Lyles
et al, 2007; Spjøtvoll and Thomsen, 1987). However, in practice, there are 85

many situations where the interest lies in producing an ensemble of parameter
estimates whose distribution is close to the distribution of area-specific pa-
rameters. For example, in a hypertension study (see Section 5), one might be
interested in identifying small areas whose true mean (diastolic) blood pres-
sures are either below or above certain thresholds to identify groups that are 90

more at risk for having hypertension. Another instance is to identify small ar-
eas with average income less than the poverty line or above a specific threshold
(Ghosh, 1992) in order to have a better understanding of the socio-economic
status of the population.

Louis (1984) proposed constrained (empirical) Bayes estimates of small area 95

means in order to adjust the overshrinkage of small area means towards the
prior distribution for the special case of the Fay-Herriot model. Lahiri (1990)
gave an exact expression for the overshrinkage of the Bayes estimates of small
area means when the underlying distribution of small area means are deter-
mined only up to their mean and variance and the conditional distribution 100

of the response variable given the small area mean belongs to an exponential
family with a quadratic variance function. Ghosh (1992) found a general ex-
pression for the constrained Bayes and showed the superiority of constrained
Bayes estimates of small area means over the ML estimates in terms of the
Bayes risk for the normal distribution. 105

Since Louis (1984), constrained Bayes (CB) estimation has been widely used
in small area estimation for different purposes. For example, Datta et al (2011)
used the CB approach for Bayesian benchmarking in small area estimation to
provide an overall agreement between model-based area estimates and direct
estimates at an aggregate level. Later Ghosh and Steorts (2013) extended 110

these results to a multi-stage benchmarking scenario. Ha (2013) proposed a
general benchmarking method for complex benchmarking questions. Later on,
Ha and Lahiri (2014) pointed out potential problems caused by benchmarking
and recommended to implement the benchmarking with caution. See Jiang
and Lahiri (2006), Ugarte et al (2009),Kubokawa and Strawderman (2013), 115

Pfeffermann et al (2014) and references therein, for other references on the
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theory and applications of the CB method in different problems including
small area estimation.
Our goal in this paper is to implement the CB methodology in small area es-
timation problems with measurement errors when the interest lies in getting a120

more precise picture of the true structure of small area parameters in order to
make classifications rather than point estimation of individual area parame-
ters. To this end, we propose to use the CB method to adjust the estimators of
true area-specific covariates and consequently construct new PB predictors of
small area means. We show that using this approach, one can obtain a more ac-125

curate estimate of the underlying histogram of the true area-specific covariate
subject to the functional measurement error, and consequently a more precise
histogram of small area predictors. Constructed CB predictors can be used for
several purposes, including ranking among areas, detection of extremes, etc.
The outline of the paper is as follows. In Section 2, we study the unit-level130

regression models with the functional measurement error in the area-specific
covariate and construct the CB estimator of the true area-specific covariate.
Further, we obtain the PB predictors of area means based on the CB estimate
of the true area-specific covariate which dominate the PB predictors of area
means based on the ML estimate of the true area-specific covariate. In Sections135

3 and 4, we obtain the constrained empirical Bayes (CEB) and constrained
hierarchical Bayes (CHB) predictors of small area means and evaluate the
performance of different predictors using some statistical criteria. The per-
formance of our proposed approach is evaluated using a real data (a blood
pressure study in New Zealand) and a simulation study in Sections 5 and 6,140

respectively. Some concluding remarks are given in Section 7.

2. Constrained Bayes Estimates of the True Area-Specific
Covariate

We consider the following nested error linear regression population model

yij = b0 + b1xi + ui + eij , i = 1, . . . ,m, j = 1, . . . , Ni, (2.1)

with145

Xij = xi + ηij , i = 1, . . . ,m, j = 1, . . . , Ni, (2.2)

where Ni is the known population size of the ith area (i=1,...,m), yij is the
value of the study variable associated with the jth unit in the ith area and xi
is the unknown true area-specific covariate associated with yij . Further, the
random errors eij , measurement errors ηij and the area-level random effects

ui are assumed to be mutually independent with eij
i.i.d∼ N(0, σ2

e), ηij
i.i.d∼150

N(0, σ2
η) and ui

i.i.d∼ N(0, σ2
u). We assume that xi is a fixed and unknown

parameter which is called functional measurement error (Fuller, 2009). When
there is no measurement error in covariate (i.e., σ2

η = 0) we have xi = Xij ,
and (2.1) and (2.2) reduce to the unit level regression model

yij = b0 + b1Xij + ui + eij , i = 1, . . . ,m, j = 1, . . . , Ni. (2.3)
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proposed by Battese et al (1988). Assuming that there is no sample selection 155

bias (i.e. the sampling scheme is not informative), a sample of size ni is selected
from the i’th area and the sample data, without loss of generality, is denoted
by (y,X) = {(yij , Xij), i = 1, . . . ,m, j = 1, . . . , ni}. Also, it is assumed that
the covariate is only observed for the units in the sample.
Our main interest is to estimate small area means, γi = 1

Ni

∑Ni
j=1 yij , for

i = 1, . . . ,m. Ghosh and Sinha (2007) obtained the PB predictor of γi as

γ̂PBi = γ̂PBi (xi, φ) = (1− fiBi)ȳi + fiBi(b0 + b1xi), (2.4)

where φ = (b0, b1, σ
2
u, σ

2
e), fi = 1 − ni

Ni
is the finite population correction

factor, and Bi =
σ2
e

σ2
e+niσ

2
u

, for i = 1, . . . ,m. However, (2.4) depends on xi’s,

the true values of the small area-specific covariate that are unknown. We need
to obtain estimates of xi’s. Estimators of the true area-specific covariate are
proposed under the quadratic loss function, L(xi, λ(y,X)) = (xi − λ(y,X))2,
where λ(y,X) is the estimator of the true area-specific covariate, such that
some optimal properties are preserved. Carroll et al (2010)[Sec. 9.1.3] and
Carroll et al (1999) considered normal prior distribution for the functional
measurement error. Torkashvand et al (2015) used the same idea to derive the

Bayes estimator of the true area-specific covariate when xi
i.i.d.∼ N(µ, τ2) as

xiB(Z̄∗i ) = E(xi|Z̄∗i ) = Ciµ+ (1− Ci)Z̄∗i , i = 1, . . . ,m, (2.5)

where Ci =
σ2
i

σ2
i+τ

2 , σ2
i =

σ2
η

(
σ2
u+

σ2e
ni

)
niσ2

u+σ
2
e+b

2
1σ

2
η

, and Z̄∗i = X̄i +
b1σ

2
η

σ2
e+niσ

2
u+b

2
1σ

2
η

(ȳi − 160

b0− b1X̄i) is the ML estimator of the true area-specific covariate (Datta et al,
2010), ȳi = 1

ni

∑ni
j=1 yij and X̄i = 1

ni

∑ni
j=1Xij , for i = 1, . . . ,m.

Even though the Bayesian method gives the best estimate of xi’s in terms of
the minimum Bayes risk, it overshrinks the Bayes estimates toward the prior
mean (µ) in the sense that 165

E(

m∑
i=1

(xi − x̄)2|Z̄∗) ≥
m∑
i=1

(xiB(Z̄∗i )− x̄B(Z̄∗))2, (2.6)

where x̄B(Z̄∗) = 1
m

∑m
i=1 xiB(Z̄∗i ), Z̄∗ = (Z̄∗1 , Z̄

∗
2 , . . . , Z̄

∗
m), and x̄ = 1

m

∑m
i=1 xi.

Formula (2.6) states that the variance of xiB is less than the posterior variance
of xi’s. In other words, as xiB ’s are marginally unbiased estimators of µ, the
inequality implies that they are more concentrated around µ in comparison
with the true posterior distribution of xi’s. The equality holds if and only if all 170

(x1 − x̄), . . . , (xm − x̄) have degenerate posterior distributions (Ghosh, 1992).
This overshrinkage results in the poor performance of the Bayes estimate in
tails of the histogram of xi’s (Ghosh, 1992; Louis, 1984; Lyles et al, 2007),
and consequently, the resulting PB predictors of small area means based on
the Bayes estimates of xi’s will perform poorly (see Sections 6 and 7). Louis 175

(1984) proposed to use the CB estimation method in order to address the
problem of overshrinkage of the standard Bayes estimator toward the prior
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mean, when the underlying distribution is a multivariate normal distribution.
This was later extended by Ghosh (1992) to other distributions. Following
Ghosh (1992), the CB estimator of xi is obtained by minimizing the posterior180

risk under the sum of squared error loss function

E

[
m∑
i=1

(xi − ti)2|Z̄∗
]
,

within the class of all estimators t(Z̄∗) = t = (t1, . . . , tm) of x = (x1, . . . , xm)
that satisfy the following two conditions

E(x̄|Z̄∗) = 1
m

m∑
i=1

ti(Z̄
∗) = t̄(Z̄∗),

E(

m∑
i=1

(xi − x̄)2|Z̄∗) =

m∑
i=1

(ti(Z̄
∗)− t̄(Z̄∗))2.

These conditions will help to obtain modified Bayes estimates of the values
of the true area-specific covariate that have a histogram with the same mean
and spread as the posterior mean and variance of the histogram of the true
area-specific covariate. Now, using the Lagrange’s method of undetermined185

multipliers, we obtain the CB estimators of xi’s as follow

xiCB(Z̄∗) = νxiB(Z̄∗i ) + (1− ν)x̄B(Z̄∗), (2.7)

where

ν ≡ ν(Z̄∗) =

(
1 +

H1(Z̄∗)

H2(Z̄∗)

) 1
2

, (2.8)

and

H1(Z̄∗) = (1− 1
m )

m∑
i=1

τ2σ2
i

τ2 + σ2
i

= (1− 1
m )

m∑
i=1

τ2Ci

H2(Z̄∗) =

m∑
i=1

(xiB(Z̄∗)− x̄B(Z̄∗))2. (2.9)

Due to (2.8), ν has the stochastic nature. In Lemma 1, we present an almost
sure asymptotic value of ν, say ν̂. Using ν̂, we show the optimality of CB
estimators of xi’s over their corresponding ML estimators in Theorem 1.

Lemma 1 Suppose the model parameters are known. As m → ∞, ν defined190

in (2.8), almost surely converges to

ν̂ =

(
1 +

(1− 1
m )
∑m
i=1 Ci∑m

i=1(1− Ci)

) 1
2

. (2.10)
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Proof See the supplementary document for the proof.
We keep using the asymptotic value of ν defined in (2.10) throughout the
paper due to the simplicity it introduces into the analysis. In Theorem 1, the
aim is to show the superiority of the CB estimate of xi over the ML estimate 195

in terms of the Bayes risk when we plug in ν̂ in (2.7) as an estimate of ν. To
this end, the Bayes risk is defined as

r(π, λ(y,X)) = Ex

[
E(y,X) (L(xi, λ(y,X)))

]
.

Theorem 1 Consider the models (2.1) and (2.2) with known model param-
eters. Suppose the prior distribution on x = (x1, . . . , xm) is π ∼ N(µ, τ2)
and the squared error loss function is used as the underlying loss function. 200

Using the asymptotic value of ν defined in Lemma 1, the CB estimators,
xCB = (x1CB , . . . , xmCB), of true area-specific covariates, x, dominate the
corresponding ML estimators, Z̄∗ = (Z̄∗1 , Z̄

∗
2 , . . . , Z̄

∗
m), in terms of the Bayes

risk, that is r(π,xCB) < r(π, Z̄∗).

Proof See the supplementary document for the proof. 205

Ghosh and Sinha (2007) introduced the PB predictor of γi as

γ̂PBiGS = γ̂PBi (xiGS , φ) = (1− fiBi)ȳi + fiBi(b0 + b1xiGS), (2.11)

where xiGS = X̄i for i = 1, . . . ,m. Similarly, Datta et al (2010) introduced
the PB predictor of small area means based on the ML estimate of the true
area-specific covariate, xiML = Z̄∗i , for i = 1, . . . ,m. In Torkashvand et al
(2015), the James-Stein estimate of the true area-specific covariate, xiJS , was
used to construct a new PB predictor of γi. In this paper, we introduce a
new PB predictor of small area means based on the CB estimate of the true
area-specific covariate by replacing xiGS with xiCB in (2.11), i.e.

γ̂PBiCB = γ̂PBi (xiCB , φ) = (1− fiBi)ȳi + fiBi(b0 + b1xiCB). (2.12)

In Theorem 2, we also show that γ̂PBiCB dominates γ̂PBiML in terms of the Bayes
risk.

Theorem 2 The PB predictor of small area mean based on the CB estimate
of the true area-specific covariate dominates the PB predictor of small area
mean based on the ML estimate of the true area-specific covariate in terms of
the Bayes risk

m∑
i=1

r(π, γ̂PBiCB) ≤
m∑
i=1

r(π, γ̂PBiML).

Proof See the supplementary document for the proof.
Similar to (2.11), γ̂PBiCB depends on the unknown model parameters. In Section
4, we provide estimates of the parameters using the method of moments, em- 210

pirical Bayes, and hierarchical Bayes methods. To compare the performance
of these predictors, we use different measures of performance such as the sen-
sitivity (Se), specificity (Sp), positive predictive value (PPV), and negative
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predictive value (NPV). These measures provide some necessary probabilities
that are useful to evaluate the precision of the PB predictors of the small area215

means when the goal is to study whether the small area means are above or
under a specified threshold (Lyles and Xu, 1999).

3. Performance measures

In Section 2, we introduced the CB estimator of the true area-specific covari-
ate. Some optimal properties of the CB estimator of the true area-specific
covariate were also discussed in the Bayesian set-up. In practice, researchers
sometimes want to classify areas according to whether their means are above
or below some meaningful thresholds. For example, in the diastolic blood pres-
sure application, having a blood pressure above the threshold t = 80 indicates
the pre-hypertension phase (Zhang and Li, 2011). In Sections 5 and 6, we use
the proposed estimator to study such scenarios. To this end, small area means
are predicted using different approaches. People inside each area are consid-
ered to be in a pre-hypertension phase if their area mean is greater than 80.
To evaluate the performance of the proposed estimators, we use the criteria
defined in Lyles and Xu (1999). Consider t as a disease diagnostic threshold. In
this work, we assume that a “positive” test or suffering from a “disease” hap-
pens if “γ̂PBi > t” where we treat γ̂PBi as the predictor of the small area mean
and a diagnostic test. If being below the threshold indicates of “disease” and
“positive” test, some adjustments of these definitions are required. Following
Lyles and Xu (1999), some statistical properties of the candidate predictors
are specified as

Se = P(“Positive”given“disease”) = P(γ̂PBi > t|γi > t),

Sp = P(“Negative”given“no disease”) = P(γ̂PBi < t|γi < t),

PPV = P(“disease”given“Positive”) = P(γi > t|γ̂PBi > t),

NPV = P(“no disease”given“Negative”) = P(γi < t|γ̂PBi < t).

Analytical expressions for these quantities can be obtained following (2.1) and
(2.2) and the bivariate normal distribution of (γi, γ̂

PB
i ). In particular, we have

SeiCB =
P(γ̂PBiCB > t, γi > t)

P(γi > t)
=

P(Si > (t− αiui), ui > di)

p

=

∫∞
di
Φ(

µsi−t+αiui
σsi

)f(u)du

p
, (3.1)

where p = P(γi > t), di = t− b0 − b1xi, and

Si = (1− fiBi)(b0 + b1xi) + fiBib1Aixi + fiBi
∑
j 6=i

DjZ̄
∗
j

+ αiēi + Fiη̄i + fiBi

(
b0 + b1µ(νCi + (1− ν)

∑m
j=1 Cj

m )
)
.
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Also, Ai = (1 − Ci)(ν + 1−ν
m ), αi = 1 − fiBi

(
1−Ai

b21σ
2
η

σ2
e+niσ

2
u+b

2
1σ

2
η

)
, Fi =

fiBib1Ai

(
1− b21σ

2
η

σ2
e+niσ

2
u+b

2
1σ

2
η

)
and Dj = 1

m (1− ν)(1−Cj). Moreover, we have

Si ∼ N(µsi , σ
2
si), where µsi = (1− fiBi)(b0 + b1xi) + fiBib1Aixi + fiBi(b0 +

b1µ(νCi + (1 − ν)
∑m
j=1 Cj

m )) + fiBi
∑
j 6=iDjxj and σ2

si = α2
i
σ2
e

ni
+ F 2

i
σ2
η

ni
+

(fiBi)
2
∑
j 6=iD

2
jσ

2
j . Similarly, we have

SpiCB =
P(γ̂PBiCB < t, γi < t)

P(γi < t)
=

P(Si < (t− αiui), ui < di)

1− p

=

∫ di
−∞ Φ(

t−αiui−µsi
σsi

)f(u)du

1− p
. (3.2)

Also,

PPViCB =
pSeiCB

Φ

(
− (t−E(γ̂PBiCB))

σ
γ̂PB
iCB

) and NPViCB =
(1− p)SpiCB

Φ

(
(t−E(γ̂PBiCB))

σ
γ̂PB
iCB

) , (3.3)

where

E(γ̂PBiCB) = (1− fiBi)(b0 + b1xi) + fiBi(b0 + b1E(xiCB)), (3.4)

var(γ̂PBiCB) = (σ2
u +

σ2
e

ni
)[(1− fiBi)2 + 2(1− fiBi)(fiBi)Ai

b21σ
2
η

σ2
e+niσ

2
u+b

2
1σ

2
η

]

+ (fiBib1)2var(xiCB), (3.5)

E(xiCB) = µ(νCi + (1− ν)
∑m
j=1 Cj

m ) +Aixi +
∑
j 6=i

Djxj , (3.6)

var(xiCB) = A2
iσ

2
i +

∑
j 6=i

D2
jσ

2
j , (3.7)

and σγ̂PBiCB =
√
var(γ̂PBiCB).

As there are unknown parameters in (3.1), (3.2), and (3.3), the method of 220

moments and the hierarchical Bayes estimates of the model parameters are
used to obtain estimates of the model parameters, and consequently using
the numerical method of integration, estimates of the performance measures
introduced in this section are given (see Section 5 for more details).

4. The Constrained Empirical (and Hierarchical) Pseudo-Bayes 225

Predictor of Small Area Means

In Sections 2 and 3, γ̂PBiCB , Sei, Spi, PPVi, and NPVi are obtained under the
assumption that model parameters are known. To estimate parameters, two
scenarios are considered. First, similar to Torkashvand et al (2015), we follow
Efron and Morris (1975) and Ghosh and Sinha (2007) to obtain the empirical 230

Bayes (EB) estimates of τ2 and µ and also the method of moments estimates of
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the model parameters (GS), respectively. Consequently, the CEB of the area-
level covariate and PEB predictor of small area means are given by replacing
unknown parameters in equations (2.7) and (2.12).
In the second scenario, we propose the CHB estimator of the true area-specific235

covariate using priors on hyper parameters ψ = (b0, b1, σ
2
u, σ

2
e , σ

2
η), µ, and τ2.

We consider informative prior distributions for the purpose of the analysis
(more details are given in Section 5 and 6). We also derive Pseudo Hierarchical
Bayes (PHB) predictors of small area means based on the CHB using the
posterior means of the components of ψ. In Section 5 and 6, we also evaluate240

the performance of PEB and PHB predictors based on the EB, GS, and HB
estimates of the model parameters, respectively.
Let νHB and νEB show estimates of the asymptotic value of ν using the HB,
and also GS and EB estimates of the model parameters, respectively. Ghosh
and Maiti (1999) pointed out that νHB > νEB in their set-up, showing that245

the individual estimates shrink toward the overall average to a lesser extend
by using the hierarchical Bayes method. They also found that the hierarchi-
cal and empirical Bayes methods asymptotically show the same behaviour in
estimating ν. In our nested error linear regression model with the functional
measurement error, we are not able to compare the behaviour of νHB and νEB250

mathematically due to their complicated forms. In Section 6, we evaluate their
performances using simulation studies.

5. An Application

In this section, we analyze a cross-sectional data from the New Zealand pop-
ulation as an application of the proposed approach. This dataset is available255

as xs.nz in VGAMdata package in R. The aim is to predict the diastolic blood
pressure using cholesterol level as the covariate and to determine groups of
people (small areas) who are in danger of hypertension corresponding to areas
with means above the specified threshold, 80, as the prehypertension phase.
As the aim is to find the proportion of small areas in the upper tail of the260

distribution of γi’s, it is reasonable to choose γ̂PEBiCEB or γ̂PEBiCHB over γ̂PEBiEB and
γ̂PEBiHB due to the overshrinkage of either γ̂PEBiEB or γ̂PEBiHB towards the prior
mean. Using this criterion, groups of people who are likely to be in hyper-
tension phase are recognized. Medical treatments can be applied accordingly.

265

To this end, we consider the female participants of the study whose ethnicity
are either Maori or others (Chinese, Indian, and other) as the population of
interest. We categorize the female participants based on the age group, BMI,
ethnic, and smoking status. The five number summary (the minimum, first
quartile, second quartile, third quartile, and maximum) of age is obtained as270

16, 32, 42, 52, and 88 while the five number summary of BMI is obtained
as 12.80, 23.53, 25.86, 28.68, and 88.43. The range between two consecutive
numbers of the five number summary is considered as a level for either age
or BMI. The smoking status also has two levels (0 and 1). Small areas are
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defined using the crossings of factors. Table 1 gives a description of some of 275

the areas. In total, we have m = 64 small areas (domains) with 43 of them
having the sample size ni, (i = 1, . . . , 43), ranging from 1 to 15 and the rest
having no sample. We expect the sampling error of the covariate in each small
area to be negligible in comparison with the measurement error due to the
grouping. Moreover, as cholesterol level and blood pressure are measured with 280

different devices, the assumption of the independency of eij ’s and ηij ’s holds.
We consider xi to be the true mean value of the cholesterol level in i’th area.
Figure 1 shows the diastolic blood pressure versus cholesterol level for female
participants with ethnicity as Maori or others. We use equations (2.1) and
(2.2) to model the data, where Xij is the observed value of cholesterol level 285

and yij is the diastolic blood pressure for the j’th person in the i’th small
area.
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Fig. 1 Diastolic blood pressure versus cholesterol level for female participants with ethnicity
as Maori or others in a cross-sectional study in New Zealand

Using the method of moments (Ghosh and Sinha, 2007), we get b̂0GS = 24.62,

b̂1GS = 9.86, σ̂2
eGS = 93.39, σ̂2

uGS = 26.07, and σ̂2
ηGS = 0.97. The empirical

Bayes method also results in µ̂EB = 5.06 and τ̂2EB = 0.15. In order to apply 290

the hierarchical Bayes method, we use the GS estimates of the model param-
eters and the empirical Bayes estimates of µ and τ2 to define the prior dis-
tributions as Unif(0, 2(9.66)), Unif(0, 2(5.1)), Unif(0, 2(0.98)), Unif(0, 2(0.38)),
N(24.62, 4), N(9.86, 4), and N(5.063, 9) for σe, σu, ση, τ , b0, b1, and µ, respec-

tively. The hierarchical Bayes method results in b̂0HB = 24.50, b̂1HB = 9.93, 295

σ̂2
eHB = 97.60, σ̂2

uHB = 2.77, σ̂2
ηHB = 1.03, µ̂HB = 5.04 and τ̂2HB = 0.46.

It is worth mentioning that small values of σ̂2
η (either σ̂2

ηGS or σ̂2
ηHB) refer

to the variance of Xij ’s (ranging between 2 and 10) while σ̂2
e (either σ̂2

eGS
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Table 1 The description of some areas that are obtained using age and BMI quantiles for
the purpose of grouping. The ethnicity refers to either Maori or other (Chinese, Indian, and
other).

Area Age BMI Ethnic Smoking Status ni
1 16-31 12.80-23.52 Maori No 13
2 16-31 23.53-25.85 Maori No 8
5 16-31 12.80-23.52 Other No 15
6 16-31 23.53-25.85 Other No 1
7 16-31 25.86-28.67 Other No 0
61 52-88 12.80-23.52 Other Yes 1
62 52-88 23.53-25.85 Other Yes 0

or σ̂2
eHB) refers to the variance of Yij ’s (ranging from 40 to 100). Further,

we get νHB = 1.28 and νEB = 1.47. Figure 2 presents the histograms of the300

average cholesterol level, xi, using different approaches. As Figure 2 shows,
the histograms of the CEB and CHB estimates of xi’s have larger variance
than the variance of the EB and HB estimates of the xi’s. As we show in the
simulation study in Section 6, the CEB and CHB result in ensemble estimates
of the true area-specific covariate with the histograms being close to the true305

histogram of xi’s in comparison with the EB and HB methods. The estimated
values of diastolic blood pressure means, γ̂i’s, using different approaches are
given in Figure 3. We use γ̂i’s to determine areas that are in danger of hy-
pertension. Finally, Se, Sp, PPV, and NPV values of different predictors of
small area means are given in Figure 4. In order to obtain these values, we310

used integrate function in R to approximate the integrals. Sometimes, the
obtained values of the measures of performance are greater than one or less
than zero due to the approximation so, we adjust them by projecting those
values into [0, 1].
As being in pre-hypertension phase is equivalent to having the diastolic blood315

pressure greater than 80 (Zhang and Li, 2011), Se and PPV are more important
measures of performance for the current application. Figure 4 shows the pseudo
estimates of Se, Sp, PPV, and NPV based on γ̂PEBiML , γ̂PEBiCEB , γ̂PEBiEB , γ̂PEBiCHB , and
γ̂PEBiHB . We observe that γ̂PEBiCEB shows the best performance in terms of the Se
and PPV. But, in terms of the Sp and NPV, they have the worst performance.320

In the case of areas with no sample units, the ML estimate of the true area-
specific covariate cannot be defined, and we have γ̂PEBiML = b̂0. However, in the
EB, CEB, HB, and CHB methods, to estimate the true area-specific covariate,
we use the information from other areas as well. As (2.5) shows, for areas with
no sample units we have Ci = 1 and so xiB = µ. Consequently, xiCB can be de-325

fined using formula (2.7) for small areas with no sample units. The EB, CEB,
HB and CHB estimates of the true area specific covariate are calculated by
replacing the EB and GS, and also HB estimates of model parameters, respec-
tively. The PEB predictors of small area means can be found accordingly. In
the application, there are 21 small areas with no sampled units. The predicted330

values of small area means for areas with no sample units are γ̂PEBiML = 24.62,
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Fig. 2 Average Cholesterol Level Estimates Using Different Approaches

Fig. 3 The estimated values of the small area mean: � , � ,  , • . . . , and # . are
corresponding to γ̂PEBML , γ̂PEBEB , γ̂PEBCEB , γ̂PEBHB , and γ̂PEBCHB

γ̂PEBiEB = 74.54, γ̂PEBiHB = 74.54, γ̂PEBiCEB = 106.97, and γ̂PEBiCHB = 85.23. As
detecting people who suffer from hypertension is important and also the sim-
ulation studies indicate that the CEB shows the best performance in terms
of the Se and PPV, we recommend to use γ̂PEBiCEB to obtain estimates of small 335

area means.
Based on our results, areas with high diastolic blood pressure belong to over-
weight women. Based on our dataset, we conclude that the smoking status
dose not have a significant contribution on the diastolic blood pressure. Our
analysis also detects the age as an influential factor as old women with high 340

BMI have high diastolic blood pressure.

6. Simulation Study

In this section, we implement a simulation study to evaluate the performance
of the proposed method. The estimates of model parameters obtained from
Section 5 are used for the purpose of simulation studies. To this end, we 345
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Fig. 4 The estimated values of the measures of performance of different areas: � , � ,
 , • . . . , and # . are corresponding to γ̂PEBML , γ̂PEBEB , γ̂PEBCEB , γ̂PEBHB , and γ̂PEBCHB

generate R = 5000 simulations with m = 43 areas in each simulation and

{(y(r)ij , X
(r)
ij ); i = 1, . . . , 43, j = 1, . . . , ni, r = 1, . . . , 5000} where b0 = 24.62,

b1 = 9.86, σ2
e = 93.39, σ2

u = 26.07, σ2
η = 0.97, x = (4.47, 4.8, 4.47, 4.83,

4.31, 4.54,4.64, 5.01, 4.85, 5.18, 5.34, 5.35, 4.91, 5.09, 4.95, 5.33, 5.03, 5.45,
5.08, 5.10, 4.88, 5.04, 6.34, 5.54, 5.07, 5.84, 4.67, 4.83, 5.05, 4.93, 5.11, 4.93,350

4.86, 5.25, 4.68, 5.26,5.08, 5.80, 5.49, 5.20, 5.18, 5.22, 4.72) where x’s are the
estimates of true area specific cholesterol level obtained in Section 5, and the
sample size n = (13, 8, 5, 10, 15, 1, 4, 7, 4, 9, 12, 1, 1, 1, 6, 9, 5, 3, 1, 2, 2,
3, 10, 4, 2, 2, 13, 10, 5, 12, 7, 7, 3, 5, 1, 3, 4, 4, 4, 1, 1, 1, 1). Further, we set
Ni = 100ni for i = 1, . . . ,m.355

In Section 5, we obtained different estimates of the model parameters using GS
and HB methods. Table 2 gives the mean squared error (MSE) of the model
parameters. Based on the MSE, it seems that we get more reliable estimates
of σ2

u and σ2
e using the GS method. Our result (not shown here) indicates

that using the GS method, τ2 is estimated close to the true one while the HB360

method overestimates τ2 significantly.

As the stochastic nature of ν introduces many difficulties in explaining the
optimal properties of the CB estimator of the true area-specific covariate, we
obtained an asymptotic expression for it in Lemma 1. In this section, we eval-
uate the precision of this asymptotic value. Figure 5 shows the asymptotic365

values of ν versus its exact values using the hierarchical and empirical Bayes
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Table 2 The MSE of the model parameters using GS and HB methods

b0 b1 σ2
e σ2

u σ2
η

MSE GS 42147.00 1647.23 101.49 214.07 0.01
MSE HB 42040.84 1643.08 217.07 507.76 0.02

estimates of the model parameters. We observe that the empirical Bayes es-
timates of the model parameters perform better than the corresponding HB
estimates in terms of the asymptotic behaviour of ν. It is worth mentioning
that since (2.10) is a decreasing function of τ2 and the HB method tends to 370

overestimate τ2 we expect to see νHB ≤ νEB . This is also confirmed in our
simulation study presented in Figure 5.

Fig. 5 Exact and asymptotic values of ν versus each other using hierarchical and empirical
Bayes estimates of the model parameters

We are also interested to evaluate the performance of different methods in
estimating the true area-specific covariate. In order to find the HB and CHB
estimates of the xi’s, we apply the informative prior distributions on the model 375

parameters. We use the MM estimates of the model parameters introduced in
Ghosh and Sinha (2007) and the empirical Bayes estimates of µ and τ2 to
define the prior distribution on ψ, µ, and τ2. To this end, we consider the
prior distributions on the standard deviations, σe, σu, and ση as the uniform
distribution between zero and twice the GS estimates of the model parameters. 380

For τ , we consider a uniform distribution between zero and twice the empirical
Bayes estimate of τ obtained from Efron and Morris (1975). For b0, b1, and µ,
we consider normal prior distributions with the means equal to GS estimates
of b0 and b1 and the empirical Bayes estimate of µ, respectively, and the
corresponding variances as 4, 4, and 9, respectively. It is worth mentioning 385

that the simulation studies (not shown here) confirm that the hierarchical
model is quite sensitive to non-informative prior distributions and also to the
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choice of hyper parameters. In order to address this problem, we consider
the GS and EB estimates of the model parameters to define the priors. The
densities of the estimated values of the true area-specific covariate using the390

Bayes, CB, EB, CEB, HB, and CHB methods are shown in Figure 6. As we
expect, the CB, CEB, and the CHB methods lead to an ensemble of estimates
with a histogram more similar to the true histogram of xi’s in comparison with
the Bayes, EB, and HB methods, respectively. As Figure 6 shows, the CHB
gives the closest ensemble of the estimates of the xi’s to the true area-specific395

covariate because the CHB makes use of the data twice - once in deriving the
prior distribution using the GS estimates of the model parameters, and the
second time in analyzing data.
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Fig. 6 The density of the estimated values of the true area-specific covariate using different
approaches (solid line) vs the density of the true area-specific covariate (dashed line)

We also evaluated the performance of different estimated values of the small
area means using the performance measures obtained in Section 3. To this end,400

the Se, Sp, PPV, and NPV of the small area mean predictors are calculated
for each simulation using the threshold of 80. We report the results averaged
over R = 5000 simulations (Figure 7). The result illustrates that in terms
of the Se and PPV measures, the CEB method performs the best. However,
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when it comes to the Sp, the HB method has the best performance while the 405

CEB also shows a reasonable behaviour. The ML estimator shows the worst
performance in terms of the Se and PPV.

Fig. 7 The simulated values of the measures of performance of different areas: � , � ,
 , • . . . , and # . are corresponding to γ̂PEBML , γ̂PEBEB , γ̂PEBCEB , γ̂PEBHB , and γ̂PEBCHB

The histograms of the predicted values of the first nine small area means over
R = 5000 simulations are shown in Figure 8. The small area means are mostly
below the threshold 80 such that the probability of getting small area means 410

over 80 is small using the model parameters in the simulation study. Note that
we observe similar behaviour in other small areas as well.
The MSPE of γ̂PBiCB is given by

E(γ̂PBiCB − γi)2 = E(γ̂PBiCB − γ̂Bi )2 + E(γ̂Bi − γi)2

= (fiBib1)2
[
E(xiCB − xi)2

]
+ f2i

(
σ2
e(

(1−Bi)2

ni
+

1

Ni − ni
) +B2

i σ
2
u

)
,

(6.1)

where (3.6) and (3.7) give E(xiCB) and var(xiCB), respectively. Furthermore,
Datta et al (2010) obtained the MSPE(γ̂PBiML) as

MSPE(γ̂PBiML) =
f2i σ

2
e(1−Ai)
ni

+
1

Ni
fiσ

2
e ,
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Fig. 8 The histograms of the predicted small area means for the first nine areas

where Ai = σ2
e/(σ

2
e + niσ

2
u + b21σ

2
η). The MSPE(γ̂PBiB ) is also given by

E(γ̂PBiB − γi)2 = E(γ̂PBiB − γ̂Bi )2 + E(γ̂Bi − γi)2

= (fiBib1)2
[
E(xiB − xi)2 + f2i

(
σ2
e(

(1−Bi)2

ni
+

1

Ni − ni
) +B2

i σ
2
u

)
, (6.2)

where E(xiB) = Ciµ + (1 − Ci)xi and var(xiB) = (1 − Ci)2σ2
i . In order to415

evaluate MSPE(γ̂PBiCB), MSPE(γ̂PBiB ), and also MSPE(γ̂PBiML), true values of
the model parameters are used. Table 3 gives the MSPE of γ̂PBiB , γ̂PBiCB , γ̂PBiML.
As Table 3 shows, γ̂PBiB and γ̂PBiCB perform better than γ̂PBiML especially when
the sample size is small. This happens because (2.5) and (2.7) use information
from other areas to estimate the true area-specific covariate. In some areas,420

the MSPE of PEB estimators are smaller than the corresponding MSPE of
the PB estimators. This is because there are cross-product terms involved in
the MSPE of these estimators which are not negligible and indeed they are
negative for some areas. We have planned to further investigate this issue in
a separate research project when we deal with the MSPE estimation of the425

predictors of small area means.
Similar to Torkashvand et al (2015), we also assess the performance of pre-
dictors of small area means in terms of the empirical MSPE (EMSPE). The
EMSPE of γ̂PEBi for different methods (γ̂PEBiEB , γ̂PEBiCEB , γ̂PEBiHB , γ̂PEBiCHB , and
γ̂PEBiML ) is defined as430

EMSPE(γ̂PEBi ) =
1

R

R∑
r=1

(γ̂
PEB(r)
i − γ(r)i )2.

In Torkashvand et al (2015), the superiority of γ̂PEBiEB , the PEB predictor of
the small area mean based on the James-Stein estimate of the true area-
specific covariate, in terms of the EMSPE over the γ̂PEBiML and some competitive
predictors of the small area mean was shown. Table 3 gives the EMSPE of
γ̂PEBiEB , γ̂PEBiCEB , γ̂PEBiHB , γ̂PEBiCHB , and γ̂PEBiML . Our findings indicate that the PEB435
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of small area means based on ML estimates of xi’s has the largest EMSPE
while γ̂PEBiHB gives the minimum one in most areas. γ̂PEBiCEB and γ̂PEBiCHB show
similar behaviour to γ̂PEBiEB and γ̂PEBiHB , respectively, in terms of the EMSPE.
As we expected the EMSPE of γ̂PEBiCEB and γ̂PEBiCHB are larger than γ̂PEBiEB and
γ̂PEBHB . 440

Table 3 Numerical values of the MSPE of γ̂PBiB , γ̂PBiCB and γ̂PBiML and the EMSPE of γ̂PEBiEB ,

γ̂PEBiCEB , γ̂PEBiHB , γ̂PEBiCHB , and γ̂PEBiML

MSPE EMSPE

Area
i

ni γ̂PBiB γ̂PBiCB γ̂PBiML γ̂PEBiEB γ̂PEBiCEB γ̂PEBiHB γ̂PEBiCHB γ̂PEBiML

1 13 5.89 5.89 6.98 6.21 6.53 8.44 8.36 6.30
2 8 8.73 8.74 11.28 8.83 9.25 11.15 11.34 9.36
3 5 12.32 12.48 17.94 13.97 13.86 16.71 16.69 14.59
4 10 7.32 7.32 9.05 7.29 7.57 9.76 9.75 7.54
5 15 5.21 5.22 6.06 5.48 6.12 7.50 7.54 5.65
6 1 24.94 27.27 88.36 32.09 31.90 36.47 37.94 54.74
7 4 14.22 14.44 22.36 15.02 15.52 18.08 18.58 17.17
8 7 9.67 9.68 12.87 9.87 10.31 12.29 12.51 10.51
9 4 14.21 14.34 22.36 14.21 15.07 17.23 18.03 16.74
10 9 7.97 7.96 10.04 8.12 8.54 10.18 10.40 8.57
11 12 6.30 6.30 7.56 6.12 6.50 8.41 8.53 6.37
12 1 24.94 26.88 88.36 26.19 27.44 32.08 34.53 53.72
13 1 25.07 26.72 88.36 25.28 27.14 32.75 35.55 55.88
14 1 25.01 26.66 88.36 23.87 25.90 30.93 33.88 55.07
15 6 10.82 10.85 14.99 10.91 11.56 13.47 13.93 12.03
16 9 7.98 7.96 10.04 8.26 8.64 10.66 10.87 8.66
17 5 12.29 12.34 17.94 12.35 13.14 14.79 15.37 13.97
18 3 16.78 17.25 29.72 17.58 18.29 20.20 21.29 21.70
19 1 24.98 26.62 88.36 24.73 26.77 32.41 35.36 55.85
20 2 20.23 20.90 44.40 18.47 20.11 22.58 24.47 28.73
21 2 20.26 20.95 44.40 20.21 21.56 24.09 25.76 29.54
22 3 16.82 17.02 29.72 16.09 17.40 19.34 20.65 21.09
23 10 7.32 7.33 9.05 8.73 9.35 11.07 11.59 8.95
24 4 14.17 14.50 22.36 16.05 16.22 17.93 18.43 17.61
25 2 20.29 20.91 44.40 19.34 21.01 23.98 25.91 29.80
26 2 20.22 22.37 44.40 30.95 28.45 30.26 30.06 31.79
27 13 5.89 5.89 6.98 6.08 6.40 8.26 8.21 6.23
28 10 7.32 7.32 9.05 7.67 8.05 9.90 9.93 8.00
29 5 12.31 12.34 17.94 12.69 13.52 15.19 15.90 14.45
30 12 6.30 6.30 7.56 6.38 6.65 8.68 8.61 6.57
31 7 9.68 9.68 12.87 9.48 10.07 11.66 12.08 10.32
32 7 9.68 9.68 12.87 10.03 10.55 12.65 12.92 10.77
33 3 16.76 17.06 29.72 16.96 18.03 20.02 21.13 21.43
34 5 12.31 12.36 17.94 12.78 13.51 15.37 15.98 14.40
35 1 24.97 26.93 88.36 29.80 30.66 36.00 38.10 55.87
36 3 14.23 14.31 22.36 17.10 18.39 20.48 21.85 22.25
37 4 14.23 14.31 22.36 13.80 14.78 16.82 17.67 16.44
38 4 14.20 14.77 22.36 17.42 16.67 19.02 19.06 17.92
39 4 14.22 14.46 22.36 15.04 15.45 17.47 18.18 17.06
40 1 24.97 26.73 88.36 25.90 27.71 32.33 35.08 55.55
41 1 24.98 26.71 88.36 24.51 26.17 30.69 33.33 53.12
42 1 25.02 26.78 88.36 24.83 26.45 31.14 33.80 53.42
43 1 24.98 26.85 88.36 28.32 29.27 34.26 36.45 54.42
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7. Concluding Remarks

Following Ghosh and Sinha (2007), Datta et al (2010), and Torkashvand et al
(2015), a linear mixed model with the functional measurement error in the
true area-specific covariate was considered in this paper. Following the general
paradigm of Ghosh (1992), the constrained Bayes (CB) estimate of the true445

area-specific covariate was introduced in order to get a more precise estimate
of the true underlying histogram of the population parameter. We showed
that the CB estimate of the true area-specific covariate dominated the ML
estimate in terms of the Bayes risk. Also, the pseudo-Bayes (PB) predictor
of the small area means based on the CB estimate of the true area-specific450

covariate dominated the PB predictor of the small area means using the ML
estimate. In order to evaluate the performance of different predictors of the
small area means, the sensitivity (Se), specificity (Sp), positive predictive value
(PPV), and negative predictive value (NPV) of the PB predictors of the small
area means were obtained.455

As an application, a cross-sectional data from the New Zealand population was
analyzed. A simulation study was also conducted to evaluate the performance
of the proposed approach. The simulation study showed that the histograms of
the estimated values of the true area-specific covariates using the constrained
Bayes (CB), the constrained empirical Bayes (CEB), and the constrained hier-460

archical Bayes (CHB) methods closely followed the true underlying histogram
of the area-specific covariates. In addition, the pseudo empirical Bayes (PEB)
predictor based on the CEB performed the best in terms of the Se and the
PPV. We also observed desirable behaviour of our proposed estimators in
terms of the Sp and the NPV measures. We noted that the PEB predictor465

based on the ML estimator of the true area-specific covariate performed the
worst in terms of the Se and the PPV measures.

The MSPE and EMSPE of the different predictors of the small area means
were also calculated. The MSPE of the small area mean predictor based on the
constrained Bayes estimate of the true area-specific covariate dominates the470

MSPE of the small area mean predictor based on the ML estimator of the true
area-specific covariate. Estimation of the MSPE using the jackknife method
and comparison of different methods in terms of the relative bias, similar to
Datta et al (2010) and Torkashvand et al (2015), remains as a future research
project.475

In this paper, we considered the case where we assume there is only one covari-
ate in the study that is subject to the functional measurement error. There are
many situations where there exists more than one covariate available in the
study subject to the functional measurement error. Developing methodology
for these situations can be considered as an extension of the current work. The480

other research project is to develop methodologies for the generalized linear
mixed model with the covariate subject to the functional measurement error.
This is of special interest when we are dealing with the logistic model and the
goal is to estimate the probability of occurrence of a disease.



Constrained Bayes Estimation in Small Area Models with Measurement Error 21

Acknowledgements We would like to thank three anonymous referees and the editor in 485

chief for their constructive comments on an earlier version of the paper. Mohammad Jafari
Jozani and Mahmoud Torabi gratefully acknowledge the research supports of the Natural
Sciences and Engineering Research Council of Canada (NSERC). Elaheh Torkashvand’s
research is supported by the University of Manitoba Graduate Fellowship (UMGF) and
Manitoba Graduate Scholarship (MGS). 490

References

Battese GE, Harter RM, Fuller WA (1988) An error-components model for
prediction of county crop areas using survey and satellite data. J. Am. Stat.
Assoc. 83(401):28–36

Carroll RJ, Ruppert, D, Stefanski LA, and Crainiceanu CM (2010) Measure- 495

ment error in nonlinear models: a modern perspective. CRC press
Carroll RJ, Roeder K, Wasserman L (1999) Flexible parametric measurement

error models. Biometrics 55(1):44–54
Datta GS, Ghosh M, Steorts R, Maples J (2011) Bayesian benchmarking with

applications to small area estimation. Test 20 (3):574–588 500

Datta GS, Kubokawa T, Molina I, Rao JNK (2011) Estimation of mean
squared error of model-based small area estimators. Test 20 (2): 367–388

Datta GS, Rao JNK, Torabi M (2010) Pseudo-empirical bayes estimation of
small area means under a nested error linear regression model with func-
tional measurement errors. J. Stat. Plan. Inference 140(11):2952–2962 505

Efron B, Morris C (1975) Data analysis using stein’s estimator and its gener-
alizations. J. Am. Stat. Assoc. 70 (350):311–319

Fuller WA (2009) Measurement error models. Vol. 305. John Wiley & Sons
Ghosh M (1992) Constrained bayes estimation with applications. J. Am. Stat.

Assoc. 87(418):533–540 510

Ghosh M, Maiti T (1999) Adjusted bayes estimators with applications to small
area estimation. Sankhyā Ser. B pp 71–90
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