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Abstract

The basic homogeneous SEIR (susceptible-exposed-infected-removed) model is a com-
monly used compartmental model for analyzing infectious diseases such as influenza and
COVID-19. However, in the homogeneous SEIR model, it is assumed that the popula-
tion of study is homogeneous and, one cannot incorporate individual-level information
(e.g., location of infected people, distance between susceptible and infected individuals,
vaccination status) which may be important in predicting new disease cases. Recently,
a geographically-dependent individual-level model (GD-ILM) within an SEIR framework
was developed for when both regional and individual-level spatial data are available. In
this paper, we propose to use an SEIR GD-ILM for each health region of Manitoba (central
Canadian province) population to analyze the COVID-19 data. As different health regions
of the population under study may act differently, we assume that each health region has
its own corresponding parameters determined by a homogeneous SEIR model (such as
contact rate, latent period, infectious period). A Monte Carlo Expectation Conditional
Maximization (MCECM) algorithm is used for inference. Using estimated parameters we
predict the infection rate at each health region of Manitoba over time to identify highly risk
local geographical areas. Performance of the proposed approach is also evaluated through
simulation studies.
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1. Introduction

The unprecedented coronavirus disease COVID-19 first appeared in Wuhan , China
in December 2019 and due to its rapid growth across the globe, the World Health Or-
ganization declared a global pandemic on March 11, 2020. According to the COVID-19
dashboard provided by the government of Manitoba, Canada (https://www.arcgis.com/
apps/dashboards/c7814c9d73e840f6be29c0ae0430c4bf), every health region of Mani-
toba has been affected differently in terms of incidence and mortality patterns. Modelling
the spread of diseases such as COVID-19 is often aided by incorporating spatial-temporal
dynamics in the model. Much statistical and epidemiological research has been carried out
to analyze the spatial spread of COVID-19 and its association with potential influencing
factors including socio-economic (e.g., income, unemployment rate, population mobility,
household density), demographic (e.g., age, sex), environmental (e.g., temperature, wind
spread), and epidemiological and healthcare-related (e.g., tuberculosis incidence, social dis-
tancing, testing facilities) variables. For example, Chen et al. (2020) applied a Bayesian
spatio-temporal model for determining the distribution of COVID-19 cases and its corre-
lation with the migration of the Wuhan population in the early stages of the epidemic. de
Souza et al. (2020) studied the relationship between COVID-19 incidence, mortality, case
fatality rates and living conditions such as income, education, and urban infrastructure.
They used bivariate spatial correlation and multivariate and spatial regression models for
the analysis of COVID-19 in Brazil. They showed that municipalities with low living
standards had high exposure rates and that urgent measures would have been needed to
control the spread of disease in such regions. Santos et al. (2020) created choropleth
maps of Rio De Janeiro, Brazil via ArcGIS and found that city neighbourhoods with
higher rates of seniors in the population (60+ years), higher tuberculosis incidence, and
higher average household density, were more vulnerable to COVID-19. Macharia et al.
(2020) used ArcGIS zonal statistics and arithmetic means and found that COVID-19 risk
was heterogeneously distributed across multiple social epidemiological indicators in Kenya.
They demonstrated that, for instance, people living in areas with low socio-economic sta-
tus and with poor access to sanitation and hand washing facilities were at higher risk of
contracting COVID-19. Zhang and Schwartz (2020) used multivariate regression to in-
vestigate the spatial pattern of COVID-19 cases in the United States of America (USA).
Their study indicated that there is a positive correlation between COVID-19 incidence
and mortality rates and socioeconomic factors including population density, proportion
of population aged 65+, poverty, and the percentage of the population tested. Xiong et
al. (2020) applied spatial autocorrelation and Spearman’s rank correlation methods to
investigate the association between COVID-19 cases and environmental factors (e.g., land
area and range of elevation) and socio-economic factors (e.g., registered population and
resident population). Ram’ırez and Lee (2020) used inverse distance weighted interpola-
tion techniques and Pearson’s correlation in ArcGIS and demonstrated that poverty and
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unemployment in rural areas, and population density and asthma rates in urban areas,
were factors associated with higher COVID-19-related mortality in Colorado, USA.

The typical way for modeling spread of infectious disease in communities is to compart-
mentalize individuals within the population based on their disease status. One commonly
used compartmental framework for diseases such as COVID-19 is the susceptible-exposed-
infected-removed (SEIR) model which divides the population into four stages of infection:
susceptible, exposed, infectious and removed. As it is simplest, an ordinary differential
equation (ODE)-based approach can be used, resulting in what is traditionally known as
the SEIR model, a popular deterministic mathematical model (Anderson and May; 1992).
This model allows for a latent period (time during which an individual is infected but not
yet infectious). However, the basic model assumes homogeneity in a closed population. It
is relatively easy to extend this model to allow for simple population structure (e.g., age
stratification). Such models have heavily been utilized to model and predict the transmis-
sion dynamics of COVID-19 (e.g., Giordano et al. 2020; Kissler et al. 2020; Tuite et al.
2020; He et al. 2020; Cooper et al. 2020; ben Khedher et al. 2021; Ghostine et al. 2021,
and Balsa et al. 2021).

However, COVID-19 is a disease that can be transmitted from human-to-human, and
human populations tend to have complex heterogeneous structures. Therefore, using
individual-level models which take spatio-temporal dynamics into account should lead to
better models of the disease transmission process, and, thus, help policy makers construct
more appropriate control strategies to mitigate the severity of the epidemic.
In this paper, we use a geographically-dependent individual level model (GD-ILM), intro-
duced by Mahsin et al. (2020) which is designed to model the transmission between disease
states (e.g., SEIR) on the individual-level over time. Mahsin et al. (2020) set GD-ILMs
within a Bayesian framework using Markov chain Monte Carlo methods for statistical in-
ference, and applied their approach to influenza data from Calgary, Canada. Amiri et al.
(2021) developed a frequentist approach for GD-ILMs, using an expectation conditional
maximization (ECM) algorithm, fitting GD-ILMs for the purpose of analyzing the spatial
dynamics of tuberculosis in Manitoba, Canada. In both works, an SIR compartmental
framework was employed. GD-ILMs are an extension of ILM framework introduced by
Deardon et al. (2010). The key feature of GD-ILMs and ILMs is that they allow for
covariate information on susceptible, exposed, and infectious individuals (e.g., age, sex,
genetics, lifestyle factors) as well as shared covariate information such as spatial distance
between individuals or contact measures (e.g., coronavirus for a shared household or work-
places). However, GD-ILMs also allow regional-level spatial effects to be accounted for
and modelled, as well as the individual-level effects ILMs account for.

In this paper, we analyze the second wave of COVID-19 across the five health regions
of Manitoba province, Canada, from October 1, 2020 to January 31, 2021 using a two
stage approach. The initial consideration of the dynamics of COVID-19 transmission are
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based on a homogeneous “classical” SEIR model. This analysis reveals that each of the
five health regions of Manitoba has different latent and infectious periods (see Table 1),
and, thus, fitting a single SEIR model to the COVID-19 data from the entire Manitoba is
likely not appropriate. Accounting for the different health region dynamic may allow us
to convey more accurate results to policymakers to make their effective decisions for the
prevention and control of COVID-19. Thus we consider seperate GD-ILMs for each health
region based upon the estimated latent and infectious periods under the SEIR model.
We extend previous GD-ILMs to the SEIR framework and incorporate individual-level
covariates (symptomatic/asymptomatic, gender and age) and area-level covariate (Socio-
economic status, SES). We develop a Monte Carlo Expectation Conditional Maximization
(MCECM) algorithm to carry out the inference in a frequentist framework. We then
employ our proposed model to predict the average infectivity rate of COVID-19 in each
local geographical area (LGA) of Manitoba over time.

The structure of the rest of this article is as follows: Section 2 presents the homogenous
SEIR model and results from analysis of the data for each health region. Section 3 describes
our GD-ILM framework and formulation. Parameter estimation is detailed in Section 4.
Computation of the standard errors of the model parameter estimates is considered in Sec-
tion 5. We analyze the COVID-19 data in Section 6. We further investigate performance
of the proposed model through simulation studies in Section 7. Some concluding remarks
are given in Section 8.

2. SEIR model

In the SEIR model, at each point in continuous time t ∈ ℜ+, four state variables
are considered, S ′(t), E ′(t), I ′(t) and R′(t). These denote the numbers of susceptible
individuals (who do not have the disease but can contract it), exposed individuals (who are
infected but cannot yet transmit the disease), infectious individuals (who have the disease
and are capable of spreading it) and recovered individuals (who are considered removed
from the population due to the recovery, isolation or death), within the population at time
t, respectively. Each individual in the population belongs to one, and only one, of the
aforementioned compartments at any given time point. The SEIR model equations are
given by

dS ′(t)
dt

= −β′I ′(t)S ′(t)

dE ′(t)
dt

= β′I ′(t)S ′(t) − λ′
EE ′(t),

dI ′(t)
dt

= λ′
EE ′(t) − λ′

II ′(t),
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Table 1: Results of SEIR model fitting for Manitoba and its five health regions over 500 iterations:
contact rate (β′), rounded incubation period (λE), and rounded infectious period (λI).

Regions β′ λE λI

Interlake 0.2561 3 5
Northern 0.2628 1 7
Southern 0.4827 4 5
Prairie 0.2584 9 5

Winnipeg 0.2255 2 6
Manitoba 0.2421 3 6

dR′(t)
dt

= λ′
II ′(t)

in which β′ is the transmission rate, λE = 1/λ′
E is the latent period, and λI = 1/λ′

I is the
infectious period. Also, N = S ′(t) + E ′(t) + I ′(t) + R′(t) is the total population size.

The main objective of this paper is to consider COVID-19 transmission dynamics across
Manitoba from October 1, 2020 to January 31, 2021. The number of daily infected and
recovered cases and deaths were provided by Manitoba Health. Manitoba is divided into
five health regions named Interlake, Northern, Prairie, Southern and Winnipeg. To ex-
amine possible heterogeneity in disease dynamics between the health regions, we fit the
SEIR model to data from both the whole of Manitoba, but also each health region sepa-
rately. We estimate the model parameters through maximum likelihood estimation using
the Nelder-Mead algorithm. We conduct 500 simulation studies and use the mean square
errors (MSE = 1

n

∑n
i=1(yi − ŷi)2) to measure the accuracy of the fitted model in which

yi is the actual number of reported cases and ŷi is the number of predicted cases. We
then find the best fit to the data as the model with a set of parameters which minimizing
mean square errors. The results of fitting the SEIR model are shown in Table 1. As we
can see from this table, health regions have varying transmission rates, latent periods and
infectious periods. These results motivate us to consider the dynamic of transmission of
COVID-19 in Manitoba based on health regions instead of the provincial level. Note that,
the latent and infectious periods have been rounded to the nearest integers since they are
to be used in a discrete time GD-ILM.

3. Geographically-dependent ILMs with SEIR framework

The discrete-time GD-ILM framework was proposed by Mahsin et al. (2020) and devel-
oped by Amiri et al. (2021). The GD-ILM can be defined within different compartmental
frameworks, and in this study we consider it in the SEIR framework. In the GD-ILM, the
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probability of a susceptible individual i being exposed at time t in area (region) z is:

Pizt = 1 − exp
(

− ΩS(i, z)
∑

j∈I(t,z,ξ(z))
ΩT (j, z)k(i, j) + ϵ(i, z, t)

)
,

where z represents the area index which varies from 1 to m, ξ(z) is the set of neighbouring
areas that are adjacent to area z, and I(t, z, ξ(z)) is the set of infectious individuals at
time t in the zth location and its neighbouring areas. ΩS(i, z) and ΩT (j, z) are functions
of susceptibility factors for individual i in area z, and transmissibility factors for infectious
individual j in area z, respectively. k(i, j) is the infection kernel that represents shared risk
factors associated with both susceptible individual i and infectious individual j; ϵ(i, z, t)
is a spark function and allows for “random spark” infections not well-explained by other
model components. In these models, depending on the research goal, one can use individual
persons, or aggregated units such as postal codes, dissemination areas (which are the
smallest standard geographical area defined in Canada with an average population of 400
to 700 people), as the individual units.

Suppose the study area is divided into m regions and there are n individual units within
these m regions. Let Xi = (Xi1, . . . , Xip1)⊤ and Xz = (Xz1, . . . , Xzp2)⊤ represent the in-
dividual and regional level covariate vectors with dimension p1 and p2, corresponding
to the susceptible individual unit i (i = 1, . . . , n) and region z (z = 1, . . . , m), respec-
tively. These covariates can be incorporated in the susceptibility function. Moreover, let
Wj = (Wj1, . . . , Wjp3)⊤ denotes vector of individual level covariate with dimension p3 cor-
responding to the infected individual unit j which can be incorporated in the transmibility
function. Specifically, ΩS(i, z) and ΩT (j, z) are defined as:

ΩS(i, z) = Ni exp(α0S + X⊤
i β1 + X⊤

z β2 + uz),
ΩT (j, z) = nj exp(α0T + W⊤

j β3),

where α0S is the susceptibility intercept, Ni is the number of population recorded for sus-
ceptible individual unit i, β1 = (β11, . . . , β1p1)⊤ and β2 = (β21, . . . , β2p2)⊤ are the vectors of
parameters corresponding to Xi and Xz, respectively; uz represents spatial random effects
that provide a way of accounting for latent geographic variation or unmeasured covari-
ate effects, here via the specification of some spatial structure between regions. Further,
nj is the number of infectious cases for individual unit j at time t in area z, α0T is the
transmibility intercept and β3 = (β31, . . . , β3p3)⊤ is a vector of coefficients associated with
Wj.

Here, the GD-ILM that incorporates these covariates is given by:

Pizt = 1 − exp
(

− Ni exp(α0S + X⊤
i β1 + X⊤

z β2 + uz)
∑

j∈I(t,z,ξ(z))
nj exp(α0T + W⊤

j β3)d−δ
ij

)
, (1)
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where the infection kernel is defined as k(i, j) = d−δ
ij which δ > 0 is the spatial decay

parameter and dij is the Euclidean (earth) distance between susceptible individual i and
infectious individual j. For this model, the average infectivity rate at time point t in area
z is defined as

η̄z(t) = n−1
z

nz∑
i=1

Pizt, (2)

where nz is the number of individuals in region z.
Among many different choices for modelling the random effect u = (u1, . . . , um)⊤,

we use the Leurox method introduced by Leroux et al. (2000) because it assumes that
u are a weighted combination of a spatially independent effects and a strong spatially
dependent effects. Within this framework, u has a multivariate normal distribution with
mean 0 and a covariance matrix Σu where the generalized inverse of Σu is defined as
Σ−

u = τ 2[(1 − λ)Im + λD], in which Im is the identity matrix of dimension m and D is
the intrinsic autoregression matrix which represents the neighbourhood structure of the
regions with typical element,

dzz′ =
{

gz, z = z′,
−I{z ∼ z′}, z ̸= z′.

where gz is the number of neighbours of region z, z ∼ z′ indicates that regions z and z′

are neighbours, and I is the indicator function. Also, τ 2 and λ ∈ [0, 1] are precision and
spatial dependence, respectively. The two extreme cases of λ (0 and 1) giving rise to the
independence model Σ−

u = τ 2Im and intrinsic autoregression Σ−
u = τ 2D (Besag et al.,

1991).

4. Parameter estimation via the MCECM algorithm

The EM algorithm is a general iterative method for determining maximum likelihood
estimators (MLEs) in cases where both observed and latent variables are simultaneously
present. The method was first introduced by Hartley (1958), and was later generalized
by Dempster et al. (1977). The algorithm consists of two basic steps: expectation (E)
and maximization (M) which are successively repeated. In the E step, we compute the
expectation of the log-likelihood of complete data given the observed data. In the M
step, MLEs are updated by maximizing the obtained function in the E step. However,
quite often the EM algorithm cannot be directly applied because the maximization (M)
step is difficult to carry out. Thus, Meng and Rubin (1993) proposed an extension of
the EM, the Expectation Conditional Maximization (ECM) algorithm, which is easy to
implement and more broadly applicable than the EM. The key feature of the ECM is to
replace the M-step of the EM with several analytically tractable conditional maximization
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(CM) steps. Moreover, it shares the appealing features of the EM, while often resulting in
faster convergence. Let y, z and u indicate the vectors of responses, corresponding area of
each response and spatial random effects, respectively. In this paper, to compute MLEs of
Θ = (α0S, α0T , β1, β2, β3, δ, τ, λ), based on a random sample (y; z; u), we adopt the ECM
algorithm as u is latent. For this purpose, the likelihood function of the complete data,
yc = (y; z; u), is computed as follows:

L(Θ; yc) = f(u)f(y|u, z), (3)

where f(u) is defined in the Section 3 and the probability mass function f(y|u, z) is given
by:

f(y|u, z) =
T∏

t=1

 ∏
i∈S(t,z)

m∏
z=1

(
1 − Pizt

)I(Zit=z) ∏
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∏
z=1

(
Pizt

)I(Zit=z)
,

where S(t, z) iis the set of all susceptible individuals at time t in region z, E(t, z, ξ(z))\E(t−
1, z, ξ(z)) is the set of all newly exposed individuals at time t in region z and its neighbour-
ing areas, and I(Zit = z) is an indicator function such that for i = 1, . . . , n, t = 1, . . . , T ,
and z = 1, . . . , m,

I(Zit = z) =
{

1, if the i th individual at time t is in z th region,
0, otherwise.

4.1. E-step via the Metropolis-Hastings sampler
Let yo = (y; z) denote the observed variables. At the kth iteration of the ECM algo-

rithm with current parameter estimates Θ(k), Θ(k+1) is obtained by maximizing E
[

log L(Θ; yc)|yo, Θ(k)
]

with respect to Θ. The expectation E
[

log L(Θ; yc)|yo, Θ(k)
]

is taken with respect to
f(u|yo, Θ). So, to calculate it we need f(u, yo|Θ) and f(yo|Θ). Since direct calculation
of f(yo|Θ) is not possible for the models considered here, we approximate the expecta-
tion using the Monte Carlo EM (MCEM) algorithm proposed by Wei and Tanner (1990).
Additionally, we replace the M step in the MCEM algorithm by CM steps leading to an
MCECM algorithm. The MCECM algorithm consists of the following steps:

Step 1: Select an initial value Θ(0) for the ECM sequence,
Step 2: In the (k+1)th iteration of the ECM algorithm, random samples

{
uk+1,1, uk+1,2, . . . , uk+1,L

}
are generated from f(u|yo; Θ(k)) via the Metropolis-Hastings algorithm as follows.
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Firstly, we let f(u) be the candidate density and f(u|yo) the target density where

f(u|yo) ∝ f(y|u, z)f(u).

Then, at the lth (l = 1, . . . , L) iteration of the Metropolis-Hastings algorithm with current
values uk+1,l, we generate a unew from f(u). Additionally, a value r is generated from a
Uniform(0,1) distribution, to be compared with the acceptance probability ρ = f(y|unew)

f(y|uk+1,l)
.

Specifically, uk+1,l+1 = unew if r ≤ ρ and uk+1,l+1 = uk+1,l otherwise.
Step 3: E

[
log L(Θ; yc)|yo, Θ

]
is approximated as

E
[

log L(Θ; yc)|yo, Θ
]

= 1
L

L∑
l=1

log L(Θ; y; uk+1,l) (4)

and then Θ(k+1) can be obtained by maximizing (4) with respect to (w.r.t.) Θ.
The details of maximization are provided below, and for simplicity, uk+1,l is indicated by
ul.

4.2. M-step
According to (4), we have

E
[

log L(Θ; yc)|yo, Θ
]

=
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)

1
L

L∑
l=1

[
− Ni exp (α0S + X⊤

i β1 + X⊤
z β2 + uzl)

∑
j∈I(t,z,ξ(z))

nj exp(α0T + W⊤
j β3)d−δ

ij

∣∣∣∣∣yo

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)

1
L

L∑
l=1

[
ln
(

1 − exp
(

− Ni exp(α0S + X⊤
i β1 + X⊤

z β2 + uzl)
∑

j∈I(t,z,ξ(z))

nj exp(α0T + W⊤
j β3)d−δ

ij

))∣∣∣∣∣yo

]

−m

2 ln(2π) + m

2 ln(τ2) + 1
2 ln

(∣∣∣λD + (1 − λ)I
∣∣∣)− τ2

2
1
L

L∑
l=1

[
u⊤

l

(
λD + (1 − λ)I

)
ul

∣∣∣yo

]
. (5)

We then need to maximize (5) with respect to model parameters.

4.2.1. CM-step 1
α0S is solution of the following equation

∂E
[

log L(Θ; yc)|yo, Θ
]

∂α0S
= −

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )
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∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)Ni exp(α(k)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
. (6)

Unfortunately, there is no closed-form solution for equation (6). Thus, we employ the
Newton-Raphson method to compute the solution to (6). In this regard, we have

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂α2
0S

= −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

Ni exp(α(k)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i exp(2α

(k)
0S + 2X⊤

i β
(k)
1 + 2X⊤

z β
(k)
2 )
( ∑

j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)2

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, Θ(k)

]}
.

The following recursive relationship (first-order Taylor expansion) is obtained for com-
puting α0S:

α
(k+1)
0S = α

(k)
0S −

∂
∂α0S

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂α2
0S

E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.2. CM-step 2
Let α0S = α

(k+1)
0S . Analogous to the previous estimation, to estimate β1, we observe

∂E
[

log L(Θ; yc)|yo, Θ
]

∂β1
= −

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)NiXi exp(α(k+1)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )
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∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)NiXi exp(α(k+1)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
,

and

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂β1∂β⊤
1

= −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)NiXiX⊤
i exp(α(k+1)

0S + X⊤
i β

(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

NiXiX⊤
i exp(α(k+1)

0S + X⊤
i β

(k)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i XiX⊤

i exp(2α
(k+1)
0S + 2X⊤

i β
(k)
1 + 2X⊤

z β
(k)
2 )
( ∑

j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)2

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, Θ(k)

]}
.

The following recursive equation is used for obtaining β1:

β
(k+1)
1 = β

(k)
1 −

∂
∂β1

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂β1∂β⊤
1

E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.3. CM-step 3
Let α0S = α

(k+1)
0S and β1 = β

(k+1)
1 . We update β

(k)
2 by maximizing (5) over β2, which

gives

∂E
[

log L(Θ; yc)|yo, Θ
]

∂β2
= −

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)NiXz exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k)
2 )

11



∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)NiXz exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
,

and

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂β2∂β⊤
2

= −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)NiXzX⊤
z exp(α(k+1)

0S + X⊤
i β

(k+1)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

NiXzX⊤
z exp(α(k+1)

0S + X⊤
i β

(k+1)
1 + X⊤

z β
(k)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i XzX⊤

z exp(2α
(k+1)
0S + 2X⊤

i β
(k+1)
1 + 2X⊤

z β
(k)
2 )
( ∑

j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)2

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, β
(k)
3

]}
.

The following recursive equation is used for obtaining β2:

β
(k+1)
2 = β

(k)
2 −

∂
∂β2

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂β2∂β⊤
2

E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.4. CM-step 4
Let α0S = α

(k+1)
0S , β1 = β

(k+1)
1 and β2 = β

(k+1)
2 . We update α

(k)
0T by maximizing (5)

over α0T , with

∂E
[

log L(Θ; yc)|yo, Θ
]

∂α0T
= −

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

12



∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
,

and

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂α2
0T

= −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i exp(2α

(k+1)
0S + 2X⊤

i β
(k+1)
1 + 2X⊤

z β
(k+1)
2 )

( ∑
j∈I(t,z,ξ(z))

nj exp(α(k)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)2

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, Θ(k)

]}
.

The following recursive equation (first-order Taylor expansion) is used for obtaining α0T :

α
(k+1)
0T = α

(k)
0T −

∂
∂α0T

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂α2
0T

E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.5. CM-step 5
Let α0S = α

(k+1)
0S , α0T = α

(k+1)
0T , β1 = β

(k+1)
1 and β2 = β

(k+1)
2 . We update β

(k)
3 by

maximizing (5) over β3, via

∂E
[

log L(Θ; yc)|yo, Θ
]

∂β3
= −

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k)
1 + X⊤

z β
(k+1)
2 )

13



∑
j∈I(t,z,ξ(z))

njWj exp(α(k+1)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

njWj exp(α(k+1)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
,

and

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂β3∂β⊤
3

= −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

njWjW⊤
j exp(α(k+1)

0T + W⊤
j β

(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

njWjW⊤
j exp(α(k+1)

0T + W⊤
j β

(k)
3 )d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i exp(2α

(k+1)
0S + 2X⊤

i β
(k+1)
1 + 2X⊤

z β
(k+1)
2 )( ∑

j∈I(t,z,ξ(z))

njWj exp(α(k+1)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)( ∑
j∈I(t,z,ξ(z))

njWj exp(α(k+1)
0T + W⊤

j β
(k)
3 )d−δ(k)

ij

)⊤

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, Θ(k)

]}
.

The following recursive equation is used for obtaining β3:

β
(k+1)
3 = β

(k+1)
3 −

∂
∂β3

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂β3∂β⊤
3

E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.6. CM-step 6
Let α0S = α

(k+1)
0S , α0T = α

(k+1)
0T , β1 = β

(k+1)
1 , β2 = β

(k+1)
2 and β3 = β

(k+1)
3 . We update

δ(k) by maximizing (5) over δ, via

∂E
[

log L(Θ; yc)|yo, Θ
]

∂δ
=

T∑
t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

14



∑
j∈I(t,z,ξ(z))

nj exp(α(k+1)
0T + W⊤

j β
(k+1)
3 ) ln(dij)d−δ(k)

ij E

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k+1)
0T + W⊤

j β
(k+1)
3 ) ln(dij)d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]
,

and

∂2E
[

log L(Θ; yc)|yo, Θ
]

∂δ2 = −
T∑

t=1

∑
i∈S(t,z)

m∑
z=1

I(Zit = z)Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k+1)
0T + W⊤

j β
(k+1)
3 )(ln(dij))2d−δ(k)

ij

1
L

L∑
l=1

[
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

+
T∑

t=1

∑
i∈E(t,z,ξ(z))\E(t−1,z,ξ(z))

m∑
z=1

I(Zit = z)
{

Ni exp(α(k+1)
0S + X⊤

i β
(k+1)
1 + X⊤

z β
(k+1)
2 )

∑
j∈I(t,z,ξ(z))

nj exp(α(k+1)
0T + W⊤

j β
(k+1)
3 )(ln(dij))2d−δ(k)

ij

1
L

L∑
l=1

[
(1 − Pizt)

Pizt
exp(uzl)

∣∣∣∣∣yo, Θ(k)

]

−N2
i exp(2α

(k+1)
0S + 2X⊤

i β
(k+1)
1 + 2X⊤

z β
(k+1)
2 )

( ∑
j∈I(t,z,ξ(z))

nj exp(α(k+1)
0T + W⊤

j β
(k+1)
3 ) ln(dij)d−δ(k)

ij

)2

1
L

L∑
l=1

[
(1 − Pizt)

P 2
izt

exp(2uzl)

∣∣∣∣∣yo, β
(k+1)
3

]}
.

Hence, we have the following recursive equation for obtaining δ:

δ(k+1) = δ(k) −
∂
∂δ

E
[

log L(Θ; yc)|yo, Θ(k)
]

∂2

∂δ2 E
[

log L(Θ; yc)|yo, Θ(k)
] .

4.2.7. CM-step 7
To update τ and λ on the M-step of the (k + 1)th iteration, the following equation is

be maximized:

E
[

log(f(u))
∣∣∣∣yo, Θ(k)

]
= −m

2 ln(2π) + m

2 ln(τ 2) + 1
2 ln

 det
(

λD + (1 − λ)I
)
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− τ 2

2
1
L

L∑
l=1

uT
l

(
λD + (1 − λ)I

)
ul

∣∣∣∣yo, Θ(k)

.

Hence, τ and λ are obtained by a Newton-Raphson iterative procedure as follows:(
τ
λ

)new

=
(

τ
λ

)old

+ B−1A,

where A and B are the score vector and the expected information matrix whose elements
can be defined as follows:

A(τ) =
∂E
[

log(f(u))
∣∣∣yo, β3

]
∂τ

= m

τ
− τ

1
L

L∑
l=1

[
u⊤

l

(
λD + (1 − λ)I

)
ul

∣∣∣∣∣yo, Θ(k)

]
,

A(λ) =
∂E
[

log(f(u))
∣∣∣yo, β3

]
∂λ

= 1
2 tr

((
λD + (1 − λ)I

)−1(
D − I

))
− τ2

2
1
L

L∑
l=1

[
u⊤

l

(
D − I

)
ul

∣∣∣∣∣yo, Θ(k)

]
,

B(τ, τ) = −
∂2E

[
log(f(u))

∣∣∣yo, β3

]
(∂τ)2 = m

τ2 + 1
L

L∑
l=1

[
u⊤

l

(
λD + (1 − λ)I

)
ul

∣∣∣∣∣yo, Θ(k)

]
,

B(τ, λ) = −
∂2E

[
log(f(u))

∣∣∣yo, β3

]
∂τ∂λ

= τ
1
L

L∑
l=1

[
u⊤

l

(
D − I

)
ul

∣∣∣∣∣yo, Θ(k)

]
,

B(λ, λ) = −
∂2E

[
log(f(u))

∣∣∣yo, β3

]
(∂λ)2 = 1

2 tr

((
D − I

)(
λD + (1 − λ)I

)−1(
D − I

)(
λD + (1 − λ)I

)−1
)

.

Using CM-step 1 to CM-step 7, we get updated model parameters at iteration (k + 1),
and we continue this procedure until all model parameters converge.

5. Estimation of Model Parameter Standard Errors

Many methods have been suggested for the computation of model parameter standard
errors estimate in the ECM context. Among these, the one best suited to be adapted for
the MCECM is a method introduced by Louis (1982). In this approach, an estimate of
the covariance matrix of the MLE Θ̂ can be calculated via the inverse of the observed
information matrix Iobs(Θ̂; yo). The formula for the observed information matrix is given
by

Iobs(Θ̂; yo) = Icom(Θ̂; yo) − Imiss(Θ̂; yo),
where the complete information matrix, Icom(Θ; yo), and missing information matrix,
Imiss(Θ; yo), can be approximated by

Icom(Θ; yo) = −E
[ ∂2

∂Θ∂Θ⊤ log L(Θ; yc)
∣∣∣yo, Θ

]
16



= − 1
L

L∑
l=1

∂2

∂Θ∂Θ⊤ log L(Θ; yl
c),

Imiss(Θ; yo) = E
[ ∂

∂Θ log L(Θ; yc) ∂

∂Θ⊤ log L(Θ; yc)
∣∣∣yo, Θ

]
− E

[ ∂

∂Θ log L(Θ; yc)
∣∣∣yo, Θ

]
E
[ ∂

∂Θ⊤ log L(Θ; yc)
∣∣∣yo, Θ

]
= 1

L

L∑
l=1

∂

∂Θ log L(Θ; yl
c) ∂

∂Θ⊤ log L(Θ; yl
c) −

(
1
L

L∑
l=1

∂

∂Θ log L(Θ; yl
c)
)

×

(
1
L

L∑
l=1

∂

∂Θ⊤ log L(Θ; yl
c)
)

where yl
c = (y, z, ul) in which ul, l = 1, . . . , L, are generated from the missing data

distribution using the MCECM estimate of Θ. Since
 1

L

∑L
l=1

∂
∂Θ log L(Θ; yl

c)
∣∣∣∣

Θ=Θ̂
= 0,

we ultimately have

Iobs(Θ̂; yo) = − 1
L

L∑
l=1

∂2

∂Θ∂Θ′ log L(Θ; yl
c) − 1

L

L∑
l=1

∂

∂Θ log L(Θ; yl
c) ∂

∂Θ⊤ log L(Θ; yl
c).

6. Data analysis: COVID-19 across Manitoba

In this study, we analyze the second wave of COVID-19 across Manitoba and its five
health regions (Interlake, Northern, Prairie, Southern and Winnipeg) from October 1, 2020
to January 31, 2021 (123 time points). Data were collected by Manitoba Health which
include age at diagnosis, gender, date of diagnosis, and postal code of residence. Manitoba
is divided into 96 LGAs and 2183 dissemination areas (DAs). The 6-character postal code
is used to geocode the COVID-19 patients to one of the LGAs of Manitoba. Although in
previous work DAs have been used as the individual units, here we use postal code regions
(PCRs) as the individual units in order to achive modelling at a higher resolution.

As seen in the model defined in (1), we wish to consider the number of persons in each
PCR as a risk factor for COVID-19 spread. As the population size of each DA is available
in the 2016 Census dataset, and also the number of postal codes in each DA recorded in the
Postal Code Conversion File (PCCF), the average population size of each postal code can
be approximated by linking the 2016 Census and PCCF. The first three columns of Table
3 show that Manitoba contains 27,897 postal codes and during the second wave, 27,727
persons were infected which belong to a total of 7,045 postal codes. This information
implies that in the infected PCRs we typically have more than one infected person. We
extract these values from the dataset and use them in our proposed model as nj for jth
infected postal code region. Note also, within our SEIR framework, each PCR can be
infected once and only once. We use the average diagnosis time of infected individuals in
each PCR to define its exposure time.

17



Table 2: Number of local geographical area (LGA), number of infected individuals, number of
postal codes and number of infected postal codes in Manitoba and also its five health regions.

Regions # LGA # Infected # Postal codes # Infected postal codes

Interlake 15 2211 1363 266
Northern 16 4044 1050 247
Southern 23 4239 2509 803
Prairie 17 1523 3079 412

Winnipeg 25 15710 19896 5317
Manitoba 96 27727 27897 7045

For each infected individual PCR, we use three individual-level covariates: “symptom
rate”, “proportion of males” and “proportion of population over 60 years”. We divide
patients into two groups: symptomatic and asymptomatic. The symptom rate is defined
as the percentage of infected individuals in each PCR who have at least one COVID-19
symptom (e.g. fever, chills, cough and rash).

One of the main goals of this study is to assess the geographical variation of COVID-19
risk and its relationship with regional-level measure of socio-economic status (SES). We
construct a measure of SES based upon on four census variables (income, unemployment,
education and single parent) at LGA level. The SES factor scores are standardized factor
scores derived using a principal component analysis of these four variables. This index
variable measures socio-economic deprivation with higher SES values for a region indicating
lower levels of SES. Figures 1 to 5 show the SES, number of postal codes, and incidence
rate (the number of infected postal codes in each LGA divided by the total number of
postal codes of the corresponding health region). As we can see from these figures, in all
health regions except Northern, SES appears to be heavily associated with the incidence
rate. Figure 2 also shows that not only do almost all Northern LGAs have a low level
of SES, but also the more densely populated LGAs have more infected PCRs. Thus, we
include SES as a regional-level covariate in each of our GD-ILM analyses, except for the
analysis of the Northern health region.

Table 3 shows the estimates of parameters along with their standard errors (SEs) for
GD-ILMs fitted to the COVID-19 dataset in the Northern, Interlake, Prairie, Southern and
Winnipeg health regions. We show estimates based upon the latent and infectious periods
estimated from the regions, and also based upon the complete Manitoba data analysis
in Section 2 (Table 1). For the GD-ILMs fitted based on the health region-level periods,
Table 3 shows that in Southern, Prairie and Winnipeg, people with higher SES (lower
income) were more at risk of getting COVID-19. Although we have a negative value for
SES in Interlake, this finding is confirmed through Figure 1(a) and (c). For the GD-ILMs
fitted based on the Manitoba latent and infectious periods, in Prairie and Southern health
regions, people with lower SES (higher income) were more at risk of getting COVID-19.
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SES
-0.922 - 0.000

0.000 - 2.832

Number of postal codes
4.000 - 178.000

178.000 - 352.000

352.000 - 526.000

Interlake

Incidence rate
0.001 - 0.018

0.018 - 0.035

0.035 - 0.051

(a) (b) (c)

Figure 1: (a) SES, (b) number of postal code regions, and (c) incidence rates, in the Interlake
health region.

Also, as we can see from Table 3, for both fitted models (based on both health region level
and Manitoba latent and infectious periods), PCRs with higher rate of males and higher
fraction of seniors were more vulnerable to COVID-19. Also, PCRs for all health regions
except Prairie (when fitting our GD-ILM based on both Manitoba latent and infectious
periods) with higher percentage of symptomatic persons were more at risk from COVID-19.
It is worth mentioning that for the Winnipeg health region, the results of the both methods
are very similar (Table 3) which are due to the fact that the majority of COVID-19 cases
in Manitoba belongs to the Winnipeg health region. Moreover, for all health regions we
observe that the estimated value of the spatial decay parameter (δ) is around 2.50 which
indicates that the distance between PCRs was an important factor in the transmission of
COVID-19. Also, for all health regions except Interlake, when fitting models using both
health region-level latent and infectious periods, and for the model fitted on the COVID-
19 data in Northen based on the Manitoba-wide periods, results show that spatial decay
parameters are statistically significant, and we can conclude that for each health region,
there is a spatial dependency between the LGAs. To assess which model has a better fit
to the COVID-19 data, we use the Akaike information criterion (AIC; Akaike, 1974). The
AIC is defined as AIC = −2 l(Θ̂) + 2k∗, where l(Θ̂) is the maximum of log-likelihood and
k∗ is the number of model parameters. The model with smaller AIC is preferred. We can
see from Table 3, that for all health regions the GD-ILMs with the regional-level estimated
latent and infectious periods fit our data better based on the AIC. These result imply that
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SES
-0.159 - 0.000

0.000 - 3.078

Number of postal codes
0.000 - 126.000

126.000 - 252.000

252.000 - 379.000

Incidence rate
0.000 - 0.020

0.020 - 0.095

0.095 - 0.142

Northern

(a) (b) (c)

Figure 2: (a) SES, (b) number of postal code regions, and (c) incidence rates, in the Northern
health region.
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SES
-1.128 - 0.000

0.000 - 0.743

Number of postal codes
3.000 - 241.000

241.000 - 480.000

480.000 - 719.000

Incidence rate
0.001 - 0.030

0.030 - 0.060

0.060 - 0.089

Southern

(a) (b) (c)

Figure 3: (a) SES, (b) number of postal code regions, and (c) incidence rates, in the Southern
health region.
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SES
-0.414 - 0.000

0.000 - 0.877

Number of postal codes
3.000 - 100.000

100.000 - 400.000

400.000 - 626.000

Incidence rate
0.000 - 0.004

0.004 - 0.016

0.016 - 0.024

Prairie

(a) (b) (c)
Figure 4: (a) SES, (b) number of postal code regions, and (c) incidence rates, in the Prairie health
region.
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Winnipeg

SES
-1.392 - -0.790

-0.790 - -0.187

-0.187 - 0.416

0.416 - 1.019

1.019 - 1.622

Number of postal codes
138.000 - 400.000

400.000 - 700.000

700.000 - 1000.000

1000.000 - 1350.000

1350.000 - 1661.000

Incidence rate
0.002 - 0.005

0.005 - 0.008

0.008 - 0.011

0.011 - 0.014

0.014 - 0.017

(a) (b) (c)

Figure 5: (a) SES, (b) number of postal code regions, and (c) incidence rates, in the Winnipeg
health region.
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Table 3: Model parameter estimates and their standard errors (S.E.) for the proposed GD-ILM
based on Interlake, Prairie, Northern, Southern and Winnipeg actual incubation (λE) and in-
fectious (λI) periods and Manitoba incubation and infectious periods; COVID-19 data across
Manitoba, Canada, from October 1, 2020 to January 31, 2021.

Actual periods Manitoba periods Actual periods Manitoba periods
λE = 3, λI = 5 λE = 3, λI = 6 λE = 2, λI = 6 λE = 3, λI = 6

Health region Parameter Est. S.E. Est. S.E. Health region Parameter Est. S.E. Est. S.E.
α0S -3.000 4.71e−5 -3.000 3.41e−5 α0S -3.000 3.18e−6 -2.000 4.88e−7

SES -2.167 5.35e−5 -2.373 5.38e−6 SES 0.277 7.89e−6 -0.853 9.68e−5

α0T -3.000 4.71e−5 -3.000 3.41e−5 α0T -3.000 3.18e−6 -2.000 4.88e−7

Age 60+ 1.551 1.28e−4 1.557 3.34e−5 Age 60+ 1.940 1.85e−6 1.976 3.16e−7

Interlake Symptom rate 0.458 1.02e−4 0.462 2.55e−5 Southern Symptom rate 0.019 6.55e−6 1.013 1.21e−6

Male rate 1.512 1.34e−4 1.503 4.65e−5 Male rate 1.944 1.00e−5 1.962 1.44e−6

δ 2.495 8.84e−6 2.495 5.67e−6 δ 2.541 5.19e−7 2.695 7.80e−8

τ 1.014 0.281 0.954 0.179 τ 0.847 0.126 0.852 0.125
λ 0.381 0.379 0.797 0.247 λ 0.960 0.055 0.886 0.143

AIC 2413.565e+3 2504.250e+3 AIC 2986.100 e+3 4132.340 e+3

Actual periods Manitoba periods Actual periods Manitoba periods
λE = 9, λI = 5 λE = 3, λI = 6 λE = 4, λI = 5 λE = 3, λI = 6

Health region Parameter Est. S.E. Est. S.E. Health region Parameter Est. S.E. Est. S.E.
α0S -3.000 1.61e−5 -4.000 1.92 e−5 α0S -2.000 1.32e−7 -2.000 1.32e−7

SES 1.004 4.28e−6 -0.274 2.56 e−6 SES 0.643 4.45e−9 0.644 4.43e−9

α0T -3.000 1.61e−5 -4.000 1.92 e−5 α0T -2.000 1.32e−7 -2.000 1.32e−7

Age 60+ 1.974 5.64e−6 1.938 2.36e−5 Age 60+ 1.755 1.14e−7 1.756 1.15e−7

Prairie Symptom rate 0.385 4.01e−5 -0.445 4.92e−5 Winnipeg Symptom rate 1.216 1.73e−7 1.215 1.73e−7

Male rate 1.439 4.83e−5 1.155 4.34e−5 Male rate 1.585 1.14e−7 1.585 1.16e−7

δ 2.555 2.48e−6 2.404 2.99e−6 δ 2.686 2.10e−8 2.686 2.11e−8

τ 0.659 0.113 0.619 0.106 τ 0.727 0.109 0.727 0.109
λ 0.916 0.114 0.939 0.084 λ 0.830 0.207 0.830 0.207

AIC 9280.922e+3 10246.820 e+3 AIC 3739.642 e+3 3739.754 e+3

Actual periods Manitoba periods
λE = 1, λI = 7 λE = 3, λI = 6

Health region Parameter Est. S.E. Est. S.E.
α0S -3.000 1.51e−5 -3.000 1.34e−5

α0T -3.000 1.51e−5 -3.000 1.34e−5

Age 60+ 2.394 3.67e−6 2.398 4.46e−6

Northern Symptom rate 0.627 4.45e−6 0.538 1.91e−5

Male rate 0.696 1.69e−5 0.843 1.74e−5

δ 2.504 2.69e−6 2.504 2.38e−6

τ 0.912 0.161 0.971 0.242
λ 0.920 0.110 0.305 0.333

AIC 619.582e+3 680.519e+3

analyzing health regions separately give us more accurate results in comparison with the
models fitted with latent and infectious periods from all of Manitoba.

In addition, for each health region, we predict the average infectivity rates using the
estimated parameters under both sets of latent and infections periods. The average in-
fectivity rates for LGAs of health regions over the entire time interval (123 time points)
are displayed in Figures 6 to 10. It is evident from Figures 6 to 9 that the average infec-
tivity rates of COVID-19 under the regional-level estimated latent and infectious periods
are different from those based on the Manitoba-wide estimates. This will also imply that
health region heterogeneity in the latent and infectious periods is important.

7. Simulation studies

Here, we consider simulation studies to evaluate the performance of our proposed ap-
proach. We consider PCRs as the individual-level units and generate epidemics through
960 PCRs located on a 8 × 8 grid with 64 geographical areas so there are 15 postal codes
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Figure 6: Average infectivity rate for Northern health region.

Interlake

Infectivity rate
0.0000 - 0.0013

0.0013 - 0.0026

0.0026 - 0.0038

0.0038 - 0.0051

0.0051 - 0.0064

(a) Based on actual incubation and infectious periods (b) Based on Manitoba incubation and infectious periods

Figure 7: Average infectivity rate for the Interlake health region.
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Figure 8: Average infectivity rate for the Prairie health region.

Infectivity rate
0.0001 - 0.0012

0.0012 - 0.0022

0.0022 - 0.0031

0.0031 - 0.0051

0.0051 - 0.0075

Southern

(a) Based on actual incubation and infectious periods (b) Based on Manitoba incubation and infectious periods

Figure 9: Average infectivity rate for the Southern health region.
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Infectivity rate
0.0013 - 0.0018

0.0018 - 0.0023

0.0023 - 0.0028

0.0028 - 0.0033

0.0033 - 0.0038

Winnipeg

Figure 10: Average infectivity rate for the Winnipeg health region.

in each area. The latitude (x) and longitude (y) coordinates of the areas are given by all
combinations (x, y) for x, y = 3, 6, 9, . . . , 24. We generate the population size of each PCRs
such that Ni ∼ Uniform(1,100) (i=1, . . . , 960). Further, for each infected PCR j that has
more than one resident, in order to determine its number of infectious individuals, namely
nj ∈ Z, we assume one of three percentages of residents infected, Pr ∈ {0.10, 0.20, 0.30},
and nj = Pr×Nj. We then generate two regional-level covariates X21 and X22 from N(0, 1)
and U(0, 1), respectively, to incorporate in the susceptibility function. Individual-level co-
variates W31 and W32 are generated from N(0, 1) and U(0, 1), respectively, to embed in
the transmissibility function. dij is calculated using an Euclidean distance between indi-
viduals i and j. For the spatial random effect parameters, we set the precision parameter
to τ = 0.50, and we consider two different values of the spatial dependence parameter,
λ ∈ {0.50, 0.80}, with the aim of exploring the effect of different strengths of spatial corre-
lation. Other values of model parameters used in the simulation study are given in Tables
5 and 6.
We simulated 250 random data sets from the GD-ILM on the 8 × 8 grid. To start an epi-
demic, one PCR is randomly exposed in each of the cells at t = 1. Epidemics are simulated
over an epidemic length of T = 35 time units. In order to determine the latent period
(λE) and infectious period (λI), we fit the homogeneous SEIR model to the generated data.
Since our GD-ILM is a discrete time model, we use the rounded estimates of these periods.
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Table 4: Rounded incubation period (λE) and infectious period (λI) of 8×8 grid and its sub-grids
obtained from 100 SEIR model iteration.

Grids λE λI

5 × 5 grid 2 6
5 × 3 grid 3 5
3 × 8 grid 4 4
8 × 8 grid 2 5

Results shows that across the entire population λE = 2 and λI = 5. Then, we split the
entire 8 × 8 grid into three parts consisting of grids of size 5 × 5, 5 × 3 and 3 × 8 grids. In
order to determine the λE and λI of each sub-grid, we fit the homogeneous SEIR model to
the corresponding sub-grid data. As we can see from Table 4, latent and infectious periods
vary from one sub-grid to another sub-grid and they are entirely different from the whole
8 × 8 grid periods.

In the following, for each sub-grid, we provide simulation results based on 250 runs in
terms of two different scenarios. In the first scenario results are obtained using latent and
infectious periods estimated at the sub-grid level, and in the second scenario, latent and
infectious periods estimated across the entire 8 × 8 grid. Further, we report results of the
simulation study for the entire 8 × 8 grids based on its estimated latent and infectious
periods. The model parameters are estimated via the MCECM algorithm. Tables 5 and 6
present the average of the estimated parameters for the regional-level covariates (β21, β22),
individual-level covariates (β31, β32), spatial decay parameter (δ), and parameters in the
spatial random effects (τ , λ) along with their estimated standard errors in the case of
λ = 0.5 and 0.8, respectively. As it can be seen from these tables, in all three sub-grids,
individual- and regional-level covariate coefficient estimations are generally unbiased in
the case of sub-grid time periods. Although we have reasonable results for estimated
parameters of 5 × 5 sub-grid based on entire 8 × 8 grid periods, results are less precise
in compare with those obtained using sub-grid time periods. For the both 5 × 3 and
3 × 8 sub-grids, model parameter estimates are biased based on the 8 × 8 grid latent and
infectious time periods. Finally, the last two columns of Tables 5 and 6 display unbiased
estimate of parameters for entire 8 × 8 grid based on its time periods. In terms of spatial
precision (τ) parameter we have a slightly over-estimation for sub-grids (5 × 5, 5 × 3 and
3 × 8) compared to the entire 8 × 8 grid . In the case of spatial dependency (λ) parameter,
it is not surprising that for almost all percentage of infected individuals, we have more
accurate estimation for sub-grids compared to the entire grid. Also, we have more accurate
estimation for λ = 0.50 compared to λ = 0.80 in our specific set-up.

In the following, in order to determine the cells with higher infectivity rate, we obtain
the infectivity rates of infectious disease over time at each area of sub-grids according
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Table 5: True value of model parameters along with the average parameter estimates (Est.) and
average standard errors of the estimated parameters (S.E.) over 250 simulation runs in the case
of λ = 0.5.

5 × 5 grid 5 × 3 grid 3 × 8 grid 8 × 8 grid

Actual periods 8 × 8 grid periods Actual periods 8 × 8 grid periods Actual periods 8 × 8 grid periods Actual periods

Parameter True Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

α0S 0.00 0.084 0.062 0.211 0.070 0.238 0.102 0.485 0.123 0.166 0.079 0.401 0.119 0.034 0.041

β21 1.00 0.993 0.087 0.967 0.094 0.976 0.117 0.709 0.141 1.005 0.104 0.615 0.243 0.996 0.056

β22 1.00 0.998 0.110 0.952 0.125 1.011 0.219 0.909 0.274 1.023 0.164 0.201 0.424 0.992 0.078

α0T 0.00 -0.024 0.004 -0.061 0.006 -0.077 0.102 -0.578 0.019 -0.014 0.010 -0.770 0.009 -0.016 0.002

Pr = 0.10 β31 1.00 1.004 0.151 0.978 0.155 0.979 0.218 0.816 0.259 1.005 0.139 1.014 0.305 0.992 0.091

β32 1.00 0.927 0.224 0.866 0.249 0.817 0.276 0.269 0.369 0.940 0.194 -0.102 0.385 0.962 0.122

δ 2.50 2.514 0.014 2.529 0.016 2.536 0.023 2.691 0.033 2.515 0.019 2.764 0.040 2.508 0.009

τ 0.50 0.551 0.103 0.555 0.106 0.562 0.129 0.535 0.133 0.555 0.104 0.520 0.088 0.525 0.069

λ 0.50 0.493 0.279 0.492 0.284 0.507 0.135 0.667 0.291 0.454 0.272 0.636 0.240 0.460 0.204

α0S 0.00 0.148 0.056 0.183 0.060 0.208 0.088 0.267 0.104 0.353 0.059 0.048 0.096 0.059 0.036

β21 1.00 0.982 0.076 0.948 0.081 0.987 0.101 0.566 0.121 1.030 0.075 0.554 0.116 0.998 0.049

β22 1.00 1.005 0.100 0.960 0.107 1.010 0.175 1.105 0.233 1.117 0.123 0.182 0.215 1.010 0.068

α0T 0.00 -0.018 0.003 -0.046 0.006 -0.074 0.009 -0.650 0.007 0.018 0.007 -0.718 0.004 0.001 0.001

Pr = 0.20 β31 1.00 0.979 0.110 0.974 0.148 0.983 0.206 0.865 0.289 1.012 0.099 1.009 0.230 1.010 0.077

β32 1.00 0.977 0.162 0.904 0.210 0.834 0.251 0.195 0.359 0.966 0.138 -0.154 0.285 0.963 0.107

δ 2.50 2.512 0.012 2.522 0.013 2.535 0.202 2.694 0.031 2.510 0.013 2.750 0.027 2.504 0.008

τ 0.50 0.544 0.099 0.557 0.104 0.579 0.129 0.554 0.116 0.557 0.104 0.535 0.095 0.537 0.072

λ 0.50 0.508 0.269 0.509 0.277 0.504 0.116 0.667 0.303 0.465 0.279 0.639 0.254 0.406 0.199

α0S 0.00 0.106 0.054 0.178 0.058 0.230 0.081 0.510 0.120 0.334 0.056 0.152 0.082 0.139 0.033

β21 1.00 0.998 0.072 0.980 0.076 0.995 0.094 0.632 0.180 1.020 0.071 0.517 0.097 0.997 0.045

β22 1.00 1.016 0.097 0.962 0.104 1.015 0.156 0.661 0.332 1.119 0.116 0.099 0.188 1.013 0.065

α0T 0.00 0.005 0.002 -0.029 0.003 -0.058 0.009 -0.782 0.011 0.013 0.006 -0.781 0.004 0.005 0.001

Pr = 0.30 β31 1.00 0.989 0.104 0.973 0.125 0.975 0.207 0.731 0.301 1.019 0.125 1.028 0.208 0.994 0.089

β32 1.00 0.992 0.155 0.943 0.181 0.872 0.237 0.085 0.332 0.947 0.165 -0.197 0.239 0.978 0.114

δ 2.50 2.507 0.012 2.517 0.013 2.530 0.018 2.697 0.026 2.510 0.012 2.759 0.024 2.505 0.007

τ 0.50 0.553 0.103 0.555 0.101 0.572 0.136 0.583 0.122 0.546 0.102 0.549 0.108 0.523 0.069

λ 0.50 0.480 0.271 0.502 0.278 0.480 0.167 0.631 0.310 0.470 0.277 0.554 0.315 0.438 0.201

to (2). To save space, we only provide the infectivity rate figures for the model with
Pr = 0.20 and δ = 2.50, τ = 0.50, and λ = 0.50. It is evident from Figure 11 that, for
all sub-grids, the cells with higher infectivity rates are different between the model fitted
based on sub-grids latent and infectious time periods and model fitted based on entire 8×8
grid latent and infectious time periods which confirm that using low resolution (entire grid
time periods) may lead to wrong conclusions.

8. Conclusion

We proposed a SEIR GD-ILM that allows us to consider the spatio-temporal spread
of COVID- 19 in a disjoint communities (rather than entire population) when individ-
ual level data are available. We carried out model parameter estimation via a MCECM
algorithm and tested the accuracy of the proposed method through simulation studies.
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Table 6: True value of model parameters along with the average parameter estimates (Est.) and
average standard errors of the estimated parameters (S.E.) over 250 simulation runs in the case
of λ = 0.8.

5 × 5 grid 5 × 3 grid 3 × 8 grid 8 × 8 grid

Actual periods 8 × 8 grid periods Actual periods 8 × 8 grid periods Actual periods 8 × 8 grid periods Actual periods

Parameter True Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

α0S 0.00 0.093 0.061 0.344 0.067 0.220 0.106 0.432 0.152 0.399 0.070 0.299 0.123 0.080 0.041

β21 1.00 0.994 0.087 0.963 0.096 0.986 0.132 0.723 0.150 1.014 0.092 0.723 0.179 1.003 0.056

β22 1.00 1.009 0.110 0.955 0.121 0.998 0.242 0.932 0.304 1.083 0.144 0.450 0.281 0.990 0.076

α0T 0.00 -0.010 0.006 -0.082 0.006 -0.061 0.021 -0.532 0.030 -0.004 0.007 -0.645 0.012 -0.009 0.011

Pr = 0.10 β31 1.00 0.995 0.154 0.960 0.174 1.001 0.223 0.981 0.269 1.007 0.120 0.993 0.295 0.999 0.080

β32 1.00 0.955 0.231 0.841 0.256 0.827 0.290 0.217 0.405 0.936 0.167 0.009 0.321 0.954 0.111

δ 2.50 2.511 0.014 2.539 0.015 2.534 0.025 2.657 0.037 2.516 0.016 2.713 0.037 2.509 0.009

τ 0.50 0.561 0.092 0.559 0.091 0.596 0.118 0.572 0.107 0.561 0.092 0.592 0.090 0.529 0.058

λ 0.80 0.683 0.227 0.746 0.232 0.668 0.264 0.778 0.233 0.674 0.229 0.712 0.183 0.692 0.182

α0S 0.00 0.098 0.057 0.192 0.061 0.240 0.086 0.286 0.122 0.397 0.060 0.673 0.074 0.071 0.037

β21 1.00 0.990 0.079 0.961 0.085 0.984 0.101 0.707 0.138 1.004 0.078 0.764 0.104 1.004 0.050

β22 1.00 1.017 0.103 0.961 0.108 1.034 0.173 0.820 0.223 1.089 0.126 0.091 0.169 0.987 0.072

α0T 0.00 -0.009 0.005 -0.043 0.005 -0.055 0.016 -0.568 0.019 0.010 0.007 -0.777 0.013 -0.011 0.007

Pr = 0.20 β31 1.00 1.007 0.132 0.974 169 0.991 0.179 0.838 0.214 1.024 0.098 1.046 0.107 0.991 0.081

β32 1.00 0.946 0.193 0.911 0.236 0.865 0.226 0.341 0.372 0.950 0.142 -0.305 0.176 0.976 0.109

δ 2.50 2.510 0.013 2.523 0.014 2.530 0.019 2.667 0.032 2.512 0.014 2.772 0.022 2.507 0.008

τ 0.50 0.561 0.091 0.561 0.092 0.587 0.118 0.646 0.128 0.559 0.092 0.586 0.102 0.526 0.058

λ 0.80 0.701 0.215 0.697 0.229 0.674 0.268 0.764 0.212 0.680 0.225 0.723 0.254 0.690 0.184

α0S 0.00 0.085 0.056 0.213 0.057 0.267 0.082 0.332 0.112 0.296 0.057 0.093 0.098 0.051 0.037

β21 1.00 0.984 0.075 0.968 0.074 0.992 0.095 0.632 0.140 1.016 0.073 0.288 0.242 1.007 0.049

β22 1.00 1.024 0.101 0.983 0.102 1.011 0.162 0.691 0.220 1.112 0.119 0.346 0.204 0.956 0.071

α0T 0.00 -0.009 0.003 -0.033 0.006 -0.056 0.007 -0.623 0.010 0.009 0.006 -0.764 0.012 -0.029 0.006

Pr = 0.30 β31 1.00 1.003 0.108 0.982 0.179 0.978 0.177 0.912 0.308 1.005 0.107 0.897 0.338 1.001 0.081

β32 1.00 0.952 0.170 0.926 0.249 0.859 0.226 0.117 0.333 0.958 0.145 -0.102 0.284 0.939 0.107

δ 2.50 2.509 0.012 2.520 0.012 2.530 0.018 2.679 0.034 2.509 0.013 2.774 0.029 2.511 0.008

τ 0.50 0.558 0.092 0.579 0.097 0.590 0.123 0.653 0.130 0.570 0.093 0.581 0.101 0.521 0.056

λ 0.80 0.682 0.224 0.668 0.228 0.660 0.273 0.676 0.250 0.682 0.229 0.704 0.236 0.704 0.177
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Figure 11: Predicted average rate of infectivity based on (a) actual incubation and infectious time
periods of sub-grids and (b) 8 × 8 grid incubation and infectious time periods.

Also, we applied this model to data from the second wave of COVID-19 in Manitoba. We
considered the dynamics of COVID-19 transmission over all of Manitoba as well as its five
health regions separately to ascertain the importance of accounting for health region level
heterogeneity. In our data analysis, we used socio-economic status (SES) as regional-level
covariate measured at the LGA level, and three covariates (symptom rate, proportion of
males, and proportion of people over 60 years) as covariates measured at the postal-code
level. We showed that latent and infectious time periods vary from one health region to
another health region and they are different from the entire Manitoba latent and infectious
time periods. For each health region, we fitted two models: (1) fitted with health region
specific latent and infectious periods and (2) fitted with the entire Manitoba latent and
infectious time periods. Further, for each health region, we selected the best fitted model
using AIC. Finally, we showed how infectivity rate maps could be used to determine LGAs
with higher average infectivity rates.

There are some topics may be of interest for future work. One can expand our pro-
posed model to study SEIRS (susceptible-exposed-infected-removed- susceptible) frame-
works that allow us to consider an infectious disease (e.g., COVID-19) with a different
event history. Further, in our proposed approach, the infectious time period for each indi-
vidual was assumed to be constant, and the removal time of individuals was known. These
assumptions can be relaxed, considering removal times and infectious periods as unknown
variables that need to be estimated. Further, in this study, we used a power-law distance
kernel, but that can be replaced by alternative kernels such as an exponential distance
kernel (see, for example, Chen et al., 2014).
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