
Aust. N. Z. J. Stat. 2021 doi: 10.1111/j.1467-842X.XXX

Small area estimation under a semi-parametric covariate measured with1

error2

Reyhane Sefidkar1,2, Mahmoud Torabi3∗and Amir Kavousi23

Shahid Sadoughi University of Medical Sciences, Shahid Beheshti University of4

Medical Sciences and University of Manitoba5

Summary

In recent years, small area estimation has played an important role in statistics as it deals with
the problem of obtaining reliable estimates for parameters of interest in areas with small or
even zero sample sizes corresponding to population sizes. Nested error linear regression
models are often used in small area estimation assuming that the covariates are measured
without error and also the relationship between covariates and response variable is linear.
Small area models have also been extended to the case in which a linear relationship may
not hold, using penalised spline (P-spline) regression, but assuming that the covariates are
measured without error. Recently, a nested error regression model using a P-spline regression
model, for the fixed part of the model, has been studied assuming measurement error in
covariate in the Bayesian framework. In this paper, we propose a frequentist approach
to study a semi-parametric nested error regression model using P-spline with a covariate
measured with error. In particular, the pseudo-empirical best predictors of small-area means
and their corresponding mean squared prediction error estimates are studied. Performance of
the proposed approach is evaluated through a simulation and also by a real data application.
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1. Introduction8

Sample surveys have been long used as a preferred means of gathering information about9

a large population instead of census. Sometimes, to have a detailed analysis, estimating the10

parameters for sub-populations within the overall population of interest is needed, but, due11
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2 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

to the cost and operational considerations, it is not always possible to have large enough12

sample size to warrant accurate estimates for those sub-populations which are called small13

areas. Since the traditional direct estimators do not provide adequate precision due to small14

sample sizes corresponding to population sizes, the demand to use and develop small area15

estimation methods has been greatly grown in recent years (Rao & Molina 2015). In order to16

provide reliable estimates for areas with small or even zero sample sizes, ''indirect'' estimators17

have been proposed in the context of small area estimation. The idea behind the indirect18

estimators is to increase the effective sample size by borrowing strength from other sources19

through a linking model using auxiliary information such as census data and administrative20

data (Pfeffermann et al. 2013; Rao & Molina 2015; Jiang 2017).21

Small area models, which are based on mixed model methodology, are divided into two broad22

classes: (i) area-level models that relate the small area information on the response variable23

to area-specific auxiliary variables, and (ii) unit-level models which relate the unit values of24

the response variable to the unit-specific auxiliary variables with known area means and area-25

specific covariates. Rao & Molina (2015) gave an extensive review of model-based small area26

estimation under area-level and unit-level models. Focus of the current paper is on the unit-27

level models.28

One of the basic assumptions in unit-level models is that the covariates are measured29

without error while this assumption may not be held in many real applications. Ignoring30

the measurement error (ME) may cause the small area predictors perform worse than direct31

estimators (Ybarra & Lohr 2008). In the context of classical ME model, there are two types32

of ME models, functional and structural ME model. In the functional type, the unknown33

true values of the covariate with ME are considered to be fixed which is in contrast with34

the structural type where the unobserved covariate is assumed to be stochastic. Ghosh &35

Sinha (2007), Datta, Rao & Torabi (2010), Torabi (2011) and Torkashvand, Jafari Jozani &36

Torabi (2015) studied the functional ME for an area-specific covariate in the nested error37

linear regression model. In these papers, the aim was to predict small area means with taking38

into account functional ME in covariate. To estimate the ME in covariate, Ghosh & Sinha39

(2007) proposed a moment estimator, Datta, Rao & Torabi (2010) suggested a maximum40

likelihood estimator (MLE) and Torkashvand, Jafari Jozani & Torabi (2015) used a James-41

Stein estimator to obtain pseudo-empirical Bayes (PEB) predictors of small area means.42

Another basic assumption in the unit level model is that the mean of the continuous outcome43

variable depends on the covariate value in a linear manner, while it might not hold in practice44

and due to complexity of the relationship, assuming a linear trend might only be a crude45

approximation. In such circumstances, parametric approaches will not properly work and to46

express this relation, a semi-parametric smoothing method such as penalized spline (P-spline)47
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R SEFIDKAR, M TORABI, AND A KAVOUSI 3

regression may be a good alternative (Eilers & Marx 1996). To see further applications of P-48

spline, we refer readers to the overview of P-spline models written by Ruppert, Wand &49

Carroll (2003).50

In the context of small area estimation, Opsomer et al. (2008) studied P-spline regression51

model in the linear mixed model set-up. Torabi & Shokoohi (2015) extended Opsomer et al.52

(2008) model to a generalized linear mixed model (GLMM) to study normal and non-normal53

responses. Shokoohi & Torabi (2018) studied the P-spline regression model in the class54

of GLMMs to handle both time-series and cross-sectional response. Besides the P-spline55

model, the non-parametric M-quantile regression has been also studied to model the non-56

linear relationship between the qth M-quantile and the covariates in small area estimation57

(Pratesi, Ranalli & Salvati 2008, 2009; Salvati, Ranalli & Pratesi 2011). Jiang, Nguyen & Rao58

(2010) also proposed a procedure to select the small area model from a class of approximating59

splines, using a fence method.60

In practical applications, however, there are many situations in which not only the predictor61

variable is not measured without error, but also the relationship between the response and62

the covariate is not linear or it is even hard to find the relationship between the response63

variable and the covariate. To deal with this problem, Hwang & Kim (2010, 2015) introduced64

a non-parametric nested error regression model with truncated polynomial basis functions65

and radial basis functions under functional ME model and predicted the small area means66

via a Bayesian approach. Hwang & Kim (2016) extended their non-parametric model by67

accommodating the covariates with and without ME again in a Bayesian framework.68

In this paper, our aim is to take into account the functional ME in covariate in a semi-69

parametric nested error regression model from a frequentist perspective. To that end, in70

Section 2, we first rigorously study the model and present the ''best'' predictor of small area71

means, which is the best linear unbiased predictor. We then estimate the true covariate, using72

the maximum likelihood (ML) approach, to obtain the pseudo-''best'' (PB) predictor of small73

area means. We also obtain mean squared prediction error (MSPE) of PB predictor of small74

area means. Furthermore, we use method-of-moments to estimate the model parameters to75

derive pseudo-empirical ''best'' (PEB) predictor of small area means. To estimate the MSPE76

of PEB predictor of small area means, we use the jackknife method. In order to evaluate our77

proposed PEB predictor and its corresponding jackknife MSPE estimator, a simulation study78

is conducted in Section 3. In Section 4, we employ the proposed model to predict the domain79

(area) mean blood pressure measured in National Health and Nutrition Examination Survey80

(NHANES), based on the cholesterol measured with error for some predefined domains,81

which is an important national source of information examining the health status of the82

population of the United States. Finally, we provide some concluding remarks in Section 5.83
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4 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

2. Model description84

The nested error model with P-spline regression can be described as follows. Let yij be85

the variable of interest for the j-th unit (j = 1, . . . , Ni) at the i-th small area (i = 1, . . . ,m)86

with corresponding observed covariate wij as87

yij = f0(xi) + νi + eij (i = 1, . . . ,m; j = 1, . . . , Ni), (1)

wij = xi + ηij (i = 1, . . . ,m; j = 1, . . . , Ni), (2)

where Ni is the population size of i-th area, xi is a continuous covariate which is fixed but88

unknown, ν = (ν1, . . . , νm)⊤ is the area-level random effects with νi
iid∼ N(0, σ2

ν), eij is the89

random error with eij
iid∼ N(0, σ2

e), ηij is ME with ηij
iid∼ N(0, σ2

η), and the function f0(xi)90

is generally unknown. Note that in the context of ME, we do not observe xi, but rather we91

observe wij as in (2). We can approximate f0(xi) sufficiently well using P-spline as92

f0(xi) = b0 + b1xi + . . .+ bpx
p
i +

k∑
a=1

γa(xi − τa)
p
+, (3)

where p is the degree of spline, (x)p+ denotes the function xpI{x>0}, with I as the indicator93

function, {τ1, . . . , τk} is a set of knots which ties a sequence of line segments to trace the94

continuous relation between the covariate and the response variable, b = (b0, . . . , bp)
⊤ and95

γ = (γ1, . . . , γk)
⊤ are the regression coefficients of parameters and P-spline parts of the96

model, respectively. It is assumed that γa
iid∼ N(0, σ2

γ) and νi, eij , ηij and γa are assumed to97

be mutually independent. Considering k large enough and defining the knots in a way that98

they vastly spread out over the range of xi, this class of approximation is very comprehensive99

and can approximate most smooth functions. In this study, we determine the number of spline100

knots (k) as the minimum of 40 and number of xi’s divided by 4, and the knots are quantiles101

of the distribution of xi that are equally spaced (Ruppert 2002).102

The goal is to predict the means of the response variable for the small areas of interest that is103

given by104

θi =
1

Ni

Ni∑
j=1

yij (i = 1, . . . ,m),

on the basis of the sample data which are denoted by {(yij , wij); j = 1, . . . , ni; i =105

1, . . . ,m}, where ni is the sample size of i-th small area. It is assumed that the models106

(1) and (2) hold for the sample data assuming that there is no sample selection bias and the107

sampling design is not informative.108
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R SEFIDKAR, M TORABI, AND A KAVOUSI 5

Clearly, as each of the P-spline and the small area models are in the class of random-effects109

models, the combination of these two models can also be treated as a linear mixed effects110

model as111

y = Xb+Zγ +Dν + e,

where y = (y1
⊤, . . . ,ym

⊤)⊤ , yi = (yi1, . . . , yini)
⊤, and nT =

∑m
i=1 ni is the112

total sample size. We define X = (x11 . . . ,x1n1 , . . . ,xm1, . . . ,xmnm)⊤ and113

Z = (z11, . . . , z1n1 , . . . , zm1, . . . , zmnm)⊤ where xij = xi = (1, xi, . . . , x
p
i )

⊤114

and zij = zi = ((xi − τ1)
p
+, . . . , (xi − τk)

p
+)

⊤ are the vectors of the covariates115

for each sample in i-th area, respectively, for j = 1, . . . , ni. We also define116

D = (d11, . . . ,d1n1 , . . . ,dm1, . . . ,dmnm)⊤ where dij = di = (0, . . . , 0, 1, 0, . . . , 0)⊤117

which the i-th element is equal to 1 and e = (e⊤1 , . . . , e
⊤
m)⊤ , ei = (ei1, . . . , eini)

⊤.118

2.1. Best predictor119

To predict the i-th small area mean, first, assume that the value of the covariate xi is not120

subject to the ME. Then, using the observed response data, the best predictor is given by121

θ̂Bi (xi,ϕ1) = N−1
i

[ ni∑
j=1

yij +

Ni∑
j=ni+1

ŷij

]

= (1− fi)ȳi + fi

(
b0 + b1xi + . . .+ bpx

p
i +

k∑
a=1

γ̂a(xi − τa)
p
+ + ν̂i

)
,

where fi = 1− ni/Ni for i = 1, . . . ,m, γ̂ = ΣγZ
⊤V −1(y −Xb), ν̂ = ΣνD

⊤V −1(y −122

Xb), which are the BLUP of the random effects γ and ν, respectively, where V =123

var(y) = ZΣγZ
⊤ +DΣνD

⊤ +Σe with Σγ = σ2
γIk, Σν = σ2

νIm, and Σe = σ2
eInT

and124

ϕ1 = (b⊤, σ2
e , σ

2
ν , σ

2
γ ) is assumed to be known. The corresponding MSPE of θ̂Bi is then125

given by126

E(θ̂Bi − θi)
2 = f2i q

⊤
i (Σs −ΣsΩV−1Ω⊤Σs)qi,

where Ω = (Z,D)⊤, s = (γ⊤,ν⊤)⊤, qi = (z⊤i , l
⊤
i )

⊤, where li is a vector with one as the127

i-th element and zero in other (m− 1) elements, and Σs =

[
Σγ 0

0 Σν

]
.128

As it is clear, the introduced best predictor depends on xi which may be measured with error129

in practice. As a result, the true values are not observed in such occasions. In the case of nested130

error linear regression model, Ghosh & Sinha (2007) estimated xi with its moment estimator,131

w̄i. For the same set-up, Datta, Rao & Torabi (2010) proposed a MLE for xi using all the132
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6 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

available data {yij , wij ; j = 1, . . . , ni; i = 1, . . . ,m} which is more efficient than Ghosh &133

Sinha (2007) estimator in terms of MSPE of small area predictors. Following Datta, Rao &134

Torabi (2010), we use the MLE method to estimate the true value of the covariate xi.135

2.2. Pseudo-best predictor136

In order to estimate xi, we consider the sample means of our data {(yij , wij); j =137

1, . . . , ni; i = 1, . . . ,m} through the equations (1)-(3) as138

ȳi = b0 + b1xi + . . .+ bpx
p
i +

k∑
a=1

γa(xi − τa)
p
+ + νi + ēi

= b0 + b1xi + . . .+ bpx
p
i + ū1i, (4)

w̄i = xi + ū2i, (5)

where ū1i ∼ N
(
0, σ2

γ

∑k
a=1(xi − τa)

2p
+ + σ2

ν +
σ2
e

ni

)
and ū2i = η̄i ∼ N(0,

σ2
η

ni
). Since ū1i139

is independent of ū2i, the log-likelihood function, l(xi), can be expressed as the log of joint140

density f(ȳi, w̄i|xi) = f(ȳi|xi)f(w̄i|xi) through141

l(xi) = log(f(ȳi, w̄i|xi))

∝ − 1

2σ2
η

ni(w̄i − xi)
2 − 1

2
log
[
2π
(
σ2
γ

k∑
a=1

(xi − τa)
2p
+ + σ2

ν +
σ2
e

ni

)]
− (ȳi − b0 − b1xi − . . .− bpx

p
i )

2

2
[
σ2
γ

∑k
a=1(xi − τa)

2p
+ + σ2

ν +
σ2
e

ni

] .
Since l(xi) does not have a closed form, we use numerical methods for maximization.142

Maximizing the likelihood function with respect to xi and substituting x̃i, which is the143

estimate of xi, for xi in the best estimator leads to the following PB predictor144

θ̂PB
i = θ̂PB

i (ϕ)

= (1− fi)ȳi + fi(b0 + b1x̃i + . . .+ bpx̃
p
i +

k∑
a=1

γ̂a(x̃i − τa)
p
+ + ν̂i),

where ϕ = (ϕ1, σ
2
η). Since E(θ̂Bi − θi|yi) = 0, the MSPE of PB predictor is given by145

MSPE(θ̂PB
i ) = E(θ̂PB

i − θi)
2

= f2i E
{
b1(x̃i − xi) + . . .+ bp(x̃

p
i − xpi ) +

k∑
a=1

γ̂a

[
(x̃i − τa)

p
+ − (xi − τa)

p
+

]}2

+f2i q
⊤
i (Σs −ΣsΩV−1Ω⊤Σs)qi ≡ g1i(ϕ).
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R SEFIDKAR, M TORABI, AND A KAVOUSI 7

In reality, the PB predictor and corresponding MSPE are not computable as they depend146

on the model parameters ϕ.147

2.3. Pseudo-empirical best predictor148

In order to predict the small area means we now need to estimate ϕ. Then substituting ϕ̂149

for ϕ in θ̂PB
i gives PEB predictor, θ̂PEB

i , of small area means. Here, we use the method-of-150

moments to estimate the model parameters ϕ. Following Ghosh & Sinha (2007), the estimates151

of random error and ME variances are152

σ̂2
e =

SSWy

nT −m
,

σ̂2
η =

SSWw

nT −m
,

where153

SSWy =

m∑
i=1

ni∑
j=1

(yij − ȳi)
2,

SSWw =
m∑
i=1

ni∑
j=1

(wij − w̄i)
2.

In the next step, we need to estimate the regression coefficients b. Based on equations (4)-(5),154

we can write the model as155

ȳi = x̄⊤
i b+ z̄i

⊤γ + d̄i
⊤
ν + ēi, (6)

hi = x̄i + η̄i, (7)

where hi = (1, w̄i, . . . , w̄
p
i )

⊤ and η̄i = (η̄0i, η̄1i, . . . , η̄pi)
⊤. Since E(ēi) = 0, E(η̄i) = 0,156

var(ēi) = σ2
e/ni, and var(η̄i) = n−1

i Ση with Ση as the variance-covariance matrix of157

measurement errors, we have158

E(hi) = x̄i,

159

E(nihihi
⊤) = nix̄ix̄

⊤
i +Ση

From equation (6), we also have160

nix̄iȳi = nix̄ix̄
⊤
i b+ nix̄iz̄

⊤
i γ + nix̄id̄

⊤
i ν + nix̄iēi (8)
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8 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

and taking expectation and then taking expectation from both sides of the equation (8) leads161

to162

nix̄iE(ȳi) = nix̄ix̄
⊤
i b,

1

m

m∑
i=1

nix̄iE(ȳi) =
( 1

m

m∑
i=1

nix̄ix̄
⊤
i

)
b,

b =

(
1

m

m∑
i=1

nix̄ix̄
⊤
i

)−1(
1

m

m∑
i=1

nix̄iE(ȳi)

)
.

The plug-in estimator of b is then given by163

b̂ =

(
1

m

m∑
i=1

(nihihi
⊤ − Σ̂η)

)−1(
1

m

m∑
i=1

nihiȳi

)
.

To estimate σ2
γ and σ2

ν , let MSBy = (m− 1)−1
∑m

i=1 ni(ȳi − ȳ)2, then, following Datta,164

Rao & Torabi (2010), we have165

E(MSBy) =
σ2
γ

m− 1

[ m∑
i=1

(ni −
n2i
nT

)
k∑

a=1

(xi − τa)
2p
+

]
+

σ2
ν

m− 1

m∑
i=1

(ni −
n2i
nT

) + σ2
e +

1

m− 1

m∑
i=1

ni

[
b1(xi − x̄) + . . .+ bp(x

p
i − x̄p)

]2
,

and the estimates of σ2
γ and σ2

ν are then obtained as166

σ̂2
γ =

{
(m− 1)MSBy − (m− 1)σ̂2

e −
m∑
i=1

ni

[
b̂1(x̂i − x̄) + . . .+ b̂p(x̂

p
i − x̄p)

]2
−σ̂2

ν

m∑
i=1

(ni −
n2i
nT

)

}
/

{
m∑
i=1

(ni −
n2i
nT

)
k∑

a=1

(x̂i − τa)
2p
+

}
,

and167

σ̂2
ν =

1∑m
i=1(ni −

n2
i

nT
)

{
(m− 1)MSBy − (m− 1)σ̂2

e −
m∑
i=1

ni

[
b̂1(x̂i − x̄) + . . .+ b̂p(x̂

p
i − x̄p)

]2
−σ̂2

γ

[ m∑
i=1

(ni −
n2i
nT

)
k∑

a=1

(x̂i − τa)
2p
+

]}
,
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Prepared using anzsauth.cls



R SEFIDKAR, M TORABI, AND A KAVOUSI 9

where x̄j = 1
nT

∑m
i=1 nix̂

j
i , (j = 1, . . . , p). Since the estimates of (x1, . . . , xp, σ2

ν , σ
2
γ) are168

dependent of each other, they are estimated via an iterative algorithm. In particular, to169

estimate (x1, . . . , xp) the above two equations related to σ̂2
γ and σ̂2

ν are estimated iteratively170

with respect to (x1, . . . , xp) through the within mean square error of the observed values of171

the covariate. Finally, the PEB predictor of θi is given by172

θ̂PEB
i = θ̂PB

i (ϕ̂)

= (1− fi)ȳi + fi

(
b0 + b1x̃i + . . .+ bpx̃

p
i +

k∑
a=1

γ̂a(x̃i − τa)
p
+ + ν̂i

)
.

To measure the variability of θ̂PEB
i , the MSPE of PEB predictor can be decomposed as173

MSPE(θ̂PEB
i ) = E(θ̂PB

i − θi)
2 + E(θ̂PEB

i − θ̂PB
i )2 + 2E

[
(θ̂PB

i − θi)(θ̂
PEB
i − θ̂PB

i )
]

= M1i +M2i + 2M3i,

where M1i = g1i(ϕ). The MSPE of PEB predictor is not computable as it depends on174

model parameters. In order to estimate the MSPE of PEB predictor of small area means,175

we apply the jackknife method which was proposed by Jiang et al. (2002) and Chen & Lahiri176

(2002). To be able to use the jackknife method, similar to other studies which were done in the177

context of functional ME for area-level and unit-level models such as Ybarra & Lohr (2008),178

Datta, Rao & Torabi (2010) and Torkashvand, Jafari Jozani & Torabi (2015), we approximate179

the MSPE as180

MSPE(θ̂PEB
i ) ≈M1i +M2i,

by ignoring the cross-product term, noting that there is no-closed form expression for the181

MSPE(θ̂PEB
i ) (Haslett & Welsh 2019). We will report the magnitude of M3i in the182

simulation study section.183

To estimate M1i, a jackknife bias correction is used which is given by184

M̂1iJ = g1i(ϕ̂)−
∑
l ̸=i

ψl

[
g1i(ϕ̂−l)− g1i(ϕ̂)

]
, l = 1, . . . ,m, (9)

where ψl = 1 +O(m−1) is a suitable weight (Chen & Lahiri 2002). Here, g1i(ϕ̂) is the plug-185

in estimator of g1i(ϕ) and ϕ̂−l is the moment estimator of ϕ, obtained by omitting the l-th186

area data set from the full data set {(yij , wij); j = 1, . . . , ni; i = 1, . . . ,m}. This is done for187

each l ̸= i (except the i-th area) to get m− 1 estimators for ϕ.188
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10 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

The jackknife estimator of M2i is given by189

M̂2iJ =
∑
l ̸=i

ψl(θ̂
PEB
i,−l − θ̂PEB

i )2, l = 1, . . . ,m, (10)

where θ̂PEB
i,−l is the plug-in estimator of θ̂PB

i , in which the vector of the parameters (ϕ)190

is estimated by deleting the l-th area data set from the full data set each time. Finally, the191

jackknife estimator of MSPE(θ̂PEB
i ) is obtained by taking the sum of (9) and (10) as192

mspeJ(θ̂
PEB
i ) = M̂1iJ + M̂2iJ .

Assuming ψl = 1− h⊤
l (
∑

t ̸=i hth
⊤
t )

−1hl and ψl =
m−2
m−1 , the weighted and unweighted193

versions of jackknife estimator of MSPE(θ̂PEB
i ) are obtained, respectively. Note that194

in small area estimation (Rao & Molina 2015), the notation mspe is usually used as the195

estimator of MSPE.196

197

3. Simulation study198

In this section, we carry out a simulation study to compare the performance of the199

proposed approach in the P-spline model which takes into account the ME in the area level200

predictor variable and the P-spline model which ignores the ME (naive model). To this end,201

the population responses are generated from the model (1) with three choices for f0(xi):202

linear, quadratic, and exponential 1 (see later of this section for details of choices of f0(xi)).203

Note that in small area estimation, the asymptotic result will apply for large number of small204

areas m. So, for large m the effects of model parameter estimate would be vanished as long205

as the model parameter estimators are consistent. Hence, it is important in the context of206

small area estimation to show how good is the proposed model for finite sample (small m).207

Therefore, we assume that the population units are distributed across m = 40 areas equally208

in a way that Ni = 400, (i = 1, . . . ,m), and equal sample sizes are taken from each area209

as ni = 4, (i = 1, . . . ,m). We generate R = 1000 independent sets of {ν(r)i ; i = 1, . . . ,m},210

{e(r)ij ; j = 1, . . . , Ni; i = 1, . . . ,m} from Normal distribution with mean zero and variance211

σ2
ν and σ2

e , respectively. We assume σ2
ν = 1 and σ2

e = 1 for linear case and σ2
ν = 0.1 and212

σ2
e = 0.3 for non-linear cases. The true values of the predictor {xi; i = 1, . . . ,m} are also213

generated from a uniform distribution between 10 and 30 for linear case and uniform214

distribution between -3 and 3 for non-linear cases and treat them fixed through the simulation215

study. Using {xi, ν(r)i , e
(r)
ij }, the population responses are generated from the model (1) with216
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three choices of f0(xi) (linear, quadratic, and exponential 1) as217

y
(r)
ij = 1 + xi + ν

(r)
i + e

(r)
ij , r = 1, . . . , R; j = 1, . . . , Ni; i = 1, . . . ,m,

y
(r)
ij = 0.4 + 0.4xi − 0.65x2i + ν

(r)
i + e

(r)
ij ,

y
(r)
ij = 1 + xi − 0.7 exp(xi) + ν

(r)
i + e

(r)
ij ,

following Breidt, Claeskens & Opsomer (2005), Rao, Sinha & Dumitrescu (2014) and218

Shokoohi & Torabi (2018). The population mean response of i-th area for r-th simulation219

is given by220

θ
(r)
i =

1

Ni

Ni∑
j=1

y
(r)
ij .

We then generate simple random samples from each simulated population responses.221

Furthermore, we generate the observed values of the predictor variable from the ME model222

w
(r)
ij = xi + η

(r)
ij , (j = 1, . . . , ni; i = 1, . . . ,m), where η

(r)
ij is generated from a normal223

distribution with mean zero and variance σ2
η = 2 for linear case and σ2

η = 0.6 for non-linear224

quadratic and exponential 1 cases. Thereafter, for each simulated data set {(w(r)
ij , y

(r)
ij ); j =225

1, . . . , ni; i = 1, . . . ,m} in each scenario (linear, quadratic, and exponential 1), the P-spline226

model with and without ME are fitted assuming p = 1 (which has piecewise linear fit, with227

the changes in slope at each knot regarded as random with variance σ2
γ). Table 1 presents228

the moment estimators of the proposed model parameters for each scenario. In particular, in229

the case of linear model as the true model, the model provides the regression coefficients230

which are very close to the true values; note that the variance component of P-spline (σ2
γ) is231

close to zero since the true model is linear. Also, in the cases of quadratic and exponential232

1 models, the fitted model works very well to track the true values, note that in these two233

scenarios, we only need to compare the variance components estimates of the model with the234

corresponding true values. We observe that the variations of the models from the linearity235

(quadratic and exponential 1) are well captured through the estimate of σ2
γ in the proposed236

model.237

[Table 1 about here]238

Figures 1a, 1b, and 1c show PEB predictions of small area means. It seems that both models239

have similar predictions for small area means.240

[Figure 1 about here]241
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12 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

Now we need to evaluate the accuracy of θ̂PEB
i in our proposed approach. To that end,242

we calculate the empirical MSPE (EMSPE) of θ̂PEB
i which is given by243

EMSPE(θ̂
PEB(r)
i ) =

1

R

R∑
r=1

(θ̂
PEB(r)
i − θ

(r)
i )2.

To also evaluate the magnitude of the cross-product term involved in the MSPE of PEB244

predictor of small area means, MSPE of θ̂PEB(r)
i can be decomposed as245

EMSPE(θ̂
PEB(r)
i ) =Mip =M1ip +M2ip + 2M3ip,

where M1ip = R−1
∑R

r=1(θ̂
PB(r)
i − θ

(r)
i )2, M2ip = R−1

∑R
r=1(θ̂

PEB(r)
i − θ̂

PB(r)
i )2 and246

M3ip = R−1
∑R

r=1(θ̂
PB(r)
i − θ

(r)
i )(θ̂

PEB(r)
i − θ̂

PB(r)
i ).247

[Figure 2 about here]248

[Figure 3 about here]249

[Figure 4 about here]250

Figures 2a, 3a, and 4a show the EMSPE of θ̂PEB(r)
i and its decomposition for the both251

proposed and naive models for three cases (linear, quadratic, and exponential 1). Based on the252

results for the proposed and naive models for all three cases (linear, quadratic, and exponential253

1), it seems that the PEB predictions of small area means are near the true means since the254

values of Mip are close to zero particularly in the cases of quadratic and exponential forms,255

and the most contribution of MSPE is attributed to M1ip as expected. It is also clear from256

Figures 2a, 3a, and 4a that the contribution of the cross-product M3ip term involved in the257

MSPE is small in the proposed model compared to the naive model.258

In order to evaluate the performance of the weighted, mspeJW (θ̂PEB
i ), and unweighted,259

mspeJ(θ̂
PEB
i ), jackknife MSPE estimators, the empirical relative bias (RB) of these260

estimators are computed through the following expression261

RBi =
E(mspei)

EMSPEi
− 1 (i = 1, . . . ,m),

where E(mspei) is the average of simulated jackknife MSPE estimate of PEB predictor262

of small area mean i. The results of RB of jackknife mspe of PEB predictor of small area263

means (weighted and unweighted) for the proposed and naive models are also reported for264

all three cases (linear, quadratic, and exponential 1) in Figures 2b, 3b, and 4b. As we expect,265

the proposed P-spline model performs very well in terms of RB for the three scenarios in266

this simulation set-up, and it appears that the unweighted MSPE estimates perform as well267
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as the corresponding weighted version. Based on our empirical findings, jackknife method268

causes serious overestimation of MSPE of the PEB predictor in naive model due to the269

large values ofM3ip as shown in Figures 2a to 4a. Furthermore, in order to evaluate the effect270

of level of measurement error on estimates and predictions, we consider different values of271

measurement error variance for linear and non-linear cases. Table 2 presents the moment272

estimators of the proposed model parameters for each scenario. As shown in Table 2, our273

proposed P-spline model works very well in terms of model parameters estimate for different274

spline forms and measurement error variances.275

[Table 2 about here]276

In terms of performance of naive model, for example, we observed that in the case of linear277

model, with increasing the value of measurement error variance, parameter estimate of slope278

is attenuated (not shown here) unlike the proposed P-spline model. The bias in the slope279

estimate which is caused by measurement error is discussed in the literature (Carroll 2006).280

Figures 4 to 6 show EMSPE of PEB predictors and its components for the proposed and281

naive models and related percent relative bias of jackknife estimators of unweighted and282

weighted MSPE for the proposed and naive models. With increasing measurement error283

variance σ2
η, the proposed P-spline model still shows good performance in terms of RB in284

all three scenarios. Note that in case of naive model with exponential form, the cross-product285

term (M3in) has the same magnitude as the leading term (M1in) but with opposite sign. This286

is the reason that RB for the naive model is also as good as the proposed model in the case287

of exponential model.288

[Figure 5 about here]289

[Figure 6 about here]290

[Figure 7 about here]291

4. Application292

In this section, we employ our proposed P-spline model to analyze data from the 2013–293

2014 US NHANES. The NHANES is a yearly survey to determine the health and nutritional294

status of adults and children in the United States. According to the literature, there is a295

significant positive relationship between obesity and blood pressure (Lee, Bacha & Arslanian296

2006; Choy et al. 2011; Duncan et al. 2013). Since waist circumference (WC) index is297

expressed as the main indicator of abdominal fat accumulation, hence, in this study, our aim is298

to predict the mean systolic blood pressure in some demographic domains of interest using the299

WC of NHANES participants as an auxiliary information which is likely measured with error300
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14 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

(Caballero 2005). The focus of our analysis is on 5588 participants. We build fifty domains301

(m = 50) with sample sizes ranging from 31 to 479, based on sex, five age categories (20-302

29, 30-39, 40-48, 50-59, and 60-84), and five race and ethnicity groups (Mexican American,303

Other Hispanic, White non-Hispanic, Black non-Hispanic and Other), and use the WC and304

systolic blood pressure as the values of the predictor and response variables. Figure 8 shows305

the mean systolic blood pressure versus the mean WC in 50 domains. It appears from Figure 8306

that there is a non-linear relationship between these two variables. So, semi-parametric307

models such as P-spline models are good candidates to analyze this data set. In addition, since308

the WC is prone to measurement error, applying the proposed model (P-spline with p = 1309

which considers ME of the variable WC) seems to be worthwhile. To compare the proposed310

model with the naive model, we also analyze this data set with ignoring measurement error.311

The estimated parameters (and standard errors using jackknife method) for the proposed312

model are b̂0 = 35.92(20.41), b̂1 = 0.88(0.20), σ̂2
η = 234.33(13.07), σ̂2

e = 249.27(23.13),313

σ̂2
ν = 5.00(6× 10−11), σ̂2

γ = 0.13(0.05) and for the naive model are b̂0 = 42.74(18.53),314

b̂1 = 0.81(0.18), σ̂2
e = 249.27(23.13), σ̂2

ν = 5.00(3× 10−11), σ̂2
γ = 0.12(0.05). From the315

estimated parameter and corresponding standard error of variance of ME and comparing316

the test statistic with critical value 1.96, it is observed that the WC is measured with error.317

Furethermore, based on the obtained significant non-zero σ2
γ , it is clear that there is a non-318

linear relationship between WC and systolic blood pressure. So, it seems that neither the319

non-linear relation nor the measurement error in WC, which cuases attenuation in estimate320

of the slope, can be ignored. It is also worth mentioning that the proposed model shows321

that the WC has a positive effect in predicting blood pressure which is supported by the322

literature (Lee, Bacha & Arslanian 2006; Choy et al. 2011; Duncan et al. 2013). The boxplots323

of PEB predictor of mean blood pressure for predefined domains, and their weighted and324

unweighted jackknife estimates of MSPE for both models are presented in Figures 9a and325

9b based on NHANES study. According to Figure 9a, it appears that both models behave326

similarly to predict mean blood pressure for predefined domains generally. We observe that327

mean blood pressure in men is higher than women fixing age, race and ethnicity. To study328

the effect of race and ethnicity, it is seen that mean blood pressure has approximately the329

same level in Mexican American, Other Hispanic, White non-Hispanic categories, while330

Black non-Hispanic and Other category have lower and White non-Hispanic group has higher331

level of blood pressure. Furthermore, based on the results, increasing age leads to a higher332

blood pressure, fixing the other two variables. In terms of MSPE estimation, the naive333

jackknife estimation of MSPE behave differently than the proposed model. In general, the334

weighted and unweighted estimators of MSPE for the proposed model are smaller than the335

corresponding naive estimators of MSPE. Based on the simulation results, we can conclude336
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that ignoring the ME may lead to wrong conclusions in terms of overestimation in jackknife337

MSPE estimation of small area mean predictors.338

[Figure 8 about here]339

[Figure 9 about here]340

5. Discussion341

We have proposed a semi-parametric nested error regression model with functional ME342

in area-level covariate in a frequentist framework. According to the moment estimators in343

simulation part, it is observed that in the case of linear model as the true model, the regression344

coefficients of the proposed P-spline model are so close to the true values. Also, the estimate345

of variance of spline term is near zero in linear case while this estimate is non-zero for non-346

linear cases which indicates that the proposed model detects the existence of a non-linear347

relationship between the response and predictor variables. In particular, we have derived348

the PEB predictor of small area means and obtained the corresponding MSPE of PEB349

predictor of small area means. We have also proposed jackknife estimators of the MSPE of350

the PEB predictors. We have shown through a simulation that although the PEB predictor351

of small area means are very similar for the both proposed and naive methods, however, our352

proposed approach works very well in terms of jackknife MSPE estimates of the PEB353

predictor of small area means compared to the naive model which ignores the ME in the354

covariate that causes serious overestimation due to the large value of cross-product terms355

involved in the MSPE of PEB predictor of small area means. We have also studied the effect356

of increasing ME in predictor variable for both models in different scenarios with considering357

different values for variance of ME. We have observed increasing ME causes attenuation in358

slope estimate in naive model unlike the proposed model.359

Our proposed model is developed based on one covariate. An extension of our work360

to multiple covariates measured with error is simple, however, it will add much more361

unnecessary complexity to the model as one needs to define different spline terms for each362

covariate. One can also extend our approach to deal with non-normal random effects (Hui,363

Muller & Welsh 2020). As an extension of the proposed model, survey weights (Torabi 2011)364

can also be used in the estimation process in order to increase the efficiency of the PEB365

predictor of small area means. In this paper, we have assumed that the size of sample in the366

response and observed covariate is the same in each small area, however, one can extend our367

proposed approach and use multiple source of data with different sample sizes (Datta et al.368

2018). One can extend our proposed model to generalized linear models (Torabi & Shokoohi369

2015). One can also extend our proposed model and use the bootstrap and simple, unified,370
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16 MEASUREMENT ERROR IN SMALL AREA ESTIMATION

Monte-Carlo assisted (Sumca) methods as alternatives for MSPE estimation of small area371

mean predictors (Jiang & Torabi 2020). These are some of the topics for future study.372

Appendix373

The supplementary materials provide R codes and corresponding “readme” files for the374

simulation and real application conducted in this paper.375
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Table 1. Estimates (and standard errors) of the model parameters for the proposed model in the case
of three forms for spline (linear, quadratic, exponential 1). True values in the case of linear model:
b0 = b1 = σ2

ν = σ2
e = 1, σ2

η = 2; in the case of quadratic model: b0 = b1 = 0.4, b2 = −0.65, σ2
ν =

0.1, σ2
e = 0.3, σ2

η = 0.6; in the case of exponential 1 model: b0 = b1 = 1, b2 = −0.7, σ2
ν = 0.1, σ2

e =

0.3, σ2
η = 0.6.

True model b0 b1 σ2
γ σ2

ν σ2
e σ2

η

Linear 0.94(0.89) 1.00(0.04) 10−4(5× 10−4) 0.55(0.30) 1.00(0.13) 1.99(0.26)

Quadratic -1.07(0.07) 0.13(0.06) 0.10(0.01) 0.10(7× 10−13) 0.31(0.04) 0.59(0.07)

Exponential 1 -0.97(0.08) -0.73(0.07) 0.18(0.02) 0.10(5× 10−13) 0.30(0.04) 0.60(0.08)
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Figure 1. Boxplots of PEB predictions of small area means for the proposed and naive models in the
case of (a) linear, (b) quadratic, (c) exponential 1.
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Figure 2. (a) Boxplots of EMSPE of PEB predictors and its components for the proposed model
(Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of linear
form for spline; (b) boxplots of percent relative bias of jackknife estimators of unweighted (UW.RB.p)
and weighted (W.RB.p) MSPE for the proposed model, unweighted (UW.RB.n) and weighted
(W.RB.n) jackknife MSPE estimation for the naive model in the case of linear form for spline.
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Figure 3. (a) Boxplots of EMSPE of PEB predictors and its components for the proposed model
(Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of quadratic
form for spline; (b) boxplots of percent relative bias of jackknife estimators of unweighted (UW.RB.p)
and weighted (W.RB.p) MSPE for the proposed model, unweighted (UW.RB.n) and weighted
(W.RB.n) jackknife MSPE estimation for the naive model in the case of quadratic form for spline.
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Figure 4. (a) Boxplots of EMSPE of PEB predictors and its components for the proposed
model (Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of
exponential 1 form for spline; (b) boxplots of percent relative bias of jackknife estimators of unweighted
(UW.RB.p) and weighted (W.RB.p)MSPE for the proposed model, unweighted (UW.RB.n) and
weighted (W.RB.n) jackknife MSPE estimation for the naive model in the case of exponential 1
form for spline.
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Table 2. Estimates (and standard errors) of the model parameters for the proposed model in the case of
three forms for spline (linear, quadratic, exponential 1). True values in the case of linear model: b0 =
b1 = σ2

ν = σ2
e = 1; in the case of quadratic model: b0 = b1 = 0.4, b2 = −0.65, σ2

ν = 0.1, σ2
e = 0.3;

in the case of exponential 1 model: b0 = b1 = 1, b2 = −0.7, σ2
ν = 0.1, σ2

e = 0.3.

True model True value of σ2
η b0 b1 σ2

γ σ2
ν σ2

e σ2
η

Linear 1 1.00 (0.20) 1.01 (0.14) 2× 10−3(6× 10−3) 0.68 (0.26) 1.00 (0.13) 1.01 (0.12)

3.5 1.00 (0.24) 1.05 (0.22) 10−3(4× 10−3) 0.37 (0.36) 1.00 (0.13) 3.52 (0.43)

5 0.99 (0.28) 1.08 (0.30) 10−3(4× 10−3) 0.29 (0.36) 1.00 (0.13) 5.03 (0.62)

Quadratic 0.2 -1.07 (0.06) 0.12 (0.04) 0.10 (0.01) 0.10(3× 10−3) 0.30 (0.03) 0.19 (0.02)

1 -1.07 (0.06) 0.12 (0.06) 0.12(0.02) 0.10(7× 10−13) 0.30 (0.04) 0.93 (0.12)

1.5 -1.06 (0.06) 0.11 (0.07) 0.14 (0.03) 0.10(6× 10−13) 0.30 (0.03) 1.45 (0.16)

Exponential 1 0.2 -0.97 (0.07) -0.73 (0.05) 0.17 (0.01) 0.10(5× 10−13) 0.30 (0.03) 0.19 (0.02)

1 -0.97 (0.09) -0.74 (0.09) 0.19 (0.03) 0.10(6× 10−13) 0.30 (0.03) 1.00 (0.13)

1.5 -0.97 (0.09) -0.75 (0.10) 0.18 (0.03) 0.10(6× 10−13) 0.30 (0.03) 1.48 (0.18)
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Figure 5. Boxplots of EMSPE of PEB predictors and its components for the proposed model
(Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of linear
form for spline with (a) σ2

η = 1.00, (c) σ2
η = 3.50, (e) σ2

η = 5.00; boxplots of percent relative bias
of jackknife estimators of unweighted (UW.RB.p) and weighted (W.RB.p)MSPE for the proposed
model, unweighted (UW.RB.n) and weighted (W.RB.n) jackknife MSPE estimation for the naive
model in the case of linear form for spline with (b) σ2

η = 1.00, (d) σ2
η = 3.50, (f) σ2

η = 5.00.
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Figure 6. Boxplots of EMSPE of PEB predictors and its components for the proposed model
(Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of quadratic
form for spline with (a) σ2

η = 0.20, (c) σ2
η = 1.00, (e) σ2

η = 1.5; boxplots of percent relative bias of
jackknife estimators of unweighted (UW.RB.p) and weighted (W.RB.p) MSPE for the proposed
model, unweighted (UW.RB.n) and weighted (W.RB.n) jackknife MSPE estimation for the naive
model in the case of quadratic form for spline with (b) σ2

η = 0.20, (d) σ2
η = 1.00, (f) σ2

η = 1.50.
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Figure 7. Boxplots of EMSPE of PEB predictors and its components for the proposed
model (Mi.p,M1i.p,M2i.p,M3i.p) and naive model (Mi.n,M1i.n,M2i.n,M3i.n) in the case of
exponential 1 form for spline with (a) σ2

η = 0.20, (c) σ2
η = 1.00, (e) σ2

η = 1.50; boxplots of percent
relative bias of jackknife estimators of unweighted (UW.RB.p) and weighted (W.RB.p) MSPE for
the proposed model, unweighted (UW.RB.n) and weighted (W.RB.n) jackknife MSPE estimation
for the naive model in the case of exponential 1 form for spline with (b) σ2

η = 0.20, (d) σ2
η = 1.00, (f)

σ2
η = 1.50.
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Figure 8. Average systolic blood pressure versus average waist circumference for some predefined
groups (sex-age-race and ethnicity) based on US NHANES 2013– 2014 data.
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Figure 9. (a) Boxplots of PEB predictors of small area blood pressure means for the proposed and
naive models; (b) boxplots of unweighted (UW.p) and weighted (W.p) jackknife estimates of MSPE
of small area blood pressure mean predictors for the proposed model; boxplots of unweighted (UW.n)
and weighted (W.n) jackknife estimates of MSPE of small area blood pressure mean predictors for
the naive model. The boxplots in parts (a) and (b) are for some predefined groups (sex-age-race and
ethnicity) based on US NHANES 2013– 2014 data.
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Appendix A Supplementary Table451

Table A1. Variable definitions

Variable Definition
m Number of areas
Ni Population size in i-th small area
ni Sample size in i-th small area
nT Total sample size
yij Response variable for j-th unit at the i-th small area
yi Vector of response variable in i-th area
y Vector of response variable
xi True value of the covariate in i-th area
xi Vector of true value of the covariates of fixed part of the model
X Matrix of true value of the covariates of fixed part of the model
zi Vector of true value of the covariates of P-spline part of the model
Z Matrix of true value of the covariates of P-spline part of the model
wij Observed value of the covariate for j-th unit at the i-th small area
ν = (ν1, ..., νm) Vector of area-level random effects
dij Vector that shows (i, j)-th sample belongs to which area
D Matrix that shows each sample belongs to which area
eij Random error for j-th unit at the i-th small area
ei Vector of random errors in i-th area
e Matrix of random errors
ηij Measurement error for j-th unit at the i-th small area
b = (b0, . . . , bp) Vector of regression coefficients of fixed part of the model
γ = (γ1, . . . , γk) Vector of regression coefficients of P-spline part of the model
p Degree of spline
(τ1, . . . , τk) Set of knots
σ2
ν Variance of the area-level random effects
σ2
γ Variance of the random effects of P-spline part of the model
σ2
e Variance of the random error
σ2
η Variance of the measurement error

V Variance-covariance matrix of Y
Σν Variance-covariance matrix of ν
Σγ Variance-covariance matrix of γ
Σe Variance-covariance matrix of e
Ση Variance-covariance matrix of η
θi Mean response variable of i-th small area
θBi Best predictor of i-th small area
θPB
i Pseudo-best predictor of i-th area
θPEB
i Pseudo-empirical best predictor of i-th small area
x̃i Estimate of xi when all the parameters are known
x̂i Estimate of xi when all the parameters are estimated
hi = (1, W̄i, . . . , W̄

p
i )

⊤ Vector of the observed value of the covariates mean
R Number of simulation runs in simulation study
mspeJ Unweighted jackknife mean squared prediction error estimator
mspeJW Weighted jackknife mean squared prediction error estimator
RB Relative Bias
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