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The analysis of geographical and temporal variability of binomial data, using

generalized additive mixed models, are considered. In this class of models,

spatially correlated random effects and temporal components are adopted.

The frequentist analysis of these complex models is computationally difficult.

Recently developed method of data cloning has overcome the computational

challenges of the analysis of mixed models from the frequentist approach. We

use data cloning, which yields to maximum likelihood estimation, to propose

frequentist analysis of spatio-temporal modeling of odds of disease. The ad-

vantages of the data cloning approach are that the prediction and prediction

interval of the smoothing odds over space and time are easily obtained. We

illustrate this approach using a real dataset of yearly asthma physician vis-

its by children in the province of Manitoba, Canada, during 2000-2010. The

performance of the proposed approach is also studied through a simulation

study.
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1. INTRODUCTION

The analysis of disease disparities over space and time has received considerable atten-

tion since it is crucial for health systems to assess the distributive impact within systems

of public policies in relation to spatial or health status inequalities. The use of generalized

linear or additive mixed Poisson model is very common for rare events in a population

health context to construct new methodologies or to apply existing methodologies for

spatial and temporal models. However, in studies of health system services, using the

mixed Poisson baseline structure may not be appropriate as events are not typically rare

or contagious. We then need to consider spatio-temporal modeling of odds and study the

risk factors in the mixed binomial model setting.

The idea behind developments on spatial and spatio-temporal modeling of odds is

essentially to model variations in true odds and better separate systematic variability from

random noise, a component that usually overshadows crude odds maps. Maps of regional

odds of incidence and mortality over time are useful tools in determining spatial and

temporal patterns of disease. The odds of incidence or mortality may differ substantially

across geographical regions. A reliable estimate of the underlying risk of disease is usually

provided by borrowing strength from neighboring geographic sub-regions.

Waller et al. (1997) proposed Bayesian Poisson spatio-temporal models to account for

spatial and temporal random effects as well as spatio-temporal interactions. A unified

approach for a Bayesian analysis of incidence or mortality data in space and time was

proposed by Knorr-Held (2000). MacNab and Dean (2001), Torabi and Rosychuk (2011,

2012) and Torabi (2013) proposed Poisson spatio-temporal models that use autoregressive

(AR) local smoothing across the spatial effects and B-spline smoothing over the temporal

effects. Martínez-Beneito et al. (2008) suggested an AR Poisson spatio-temporal model

based on time series and spatial modeling using a Bayesian approach to link information

in time and space. In some contexts (e.g., health conditions), the underlying rates may
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change over seasons within a given year. Torabi and Rosychuk (2010) proposed a Pois-

son spatio-temporal model using a frequentist approach (generalized estimation equation

approach) to account for spatial, temporal as well as seasonal effects. Torabi (2012a)

proposed spatio-temporal models that use AR smoothing across the spatial effects, ran-

dom walk smoothing over the temporal effects, and a smoothing function to account for

seasonal effects.

It is also important to study inference for additive mixed models in mapping health

service data (e.g., asthma physician visits) when using a Poisson distribution may not be

appropriate as an approximate to binomial distribution. MacNab (2003) studied spatial

random effects modeling for non-rare diseases using a hybrid algorithm as a computa-

tional alternative to fully Bayesian spatial analysis of binomial data. Knorr-Held and

Besag (1998) considered spatio-temporal binomial data with incorporating time as a cat-

egorical variable and studied the role of time- and space-varying covariate effects from a

Bayesian perspective. Recently, Silva et al. (2008) developed a fully Bayesian binomial

spatio-temporal approach by using an AR local smoothing across the spatial effects and

a B-spline smoothing over the temporal effects to study trends of odds, and produced

smoothed maps including regional effects.

There are many different ways to perform inference in mixed models, however, the fre-

quentist approach has been computationally difficult particularly for generalized additive

mixed models (GAMMs). In the last two decades, many approximate approaches have

been proposed. For instance, one may use penalized quasi-likelihood (PQL) (Breslow and

Clayton, 1993) which may work well for Poisson mixed models. However, such methods

have been shown to perform poorly for the binomial setting (Breslow and Clayton, 1993;

Lin and Breslow, 1996).

Lele et al. (2007) recently introduced an alternative frequentist approach, called data

cloning (DC), to compute the maximum likelihood estimates (MLE) and their standard
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errors for general hierarchical models. The DC approach, which uses Bayesian tools,

avoids high dimensional numerical integration and requires neither maximization nor

differentiation of a function. In the method of DC, non-estimable parameters are also

flagged automatically. Lele et al. (2010) described an approach to compute prediction and

prediction interval of random effects in the context of generalized linear mixed models

(GLMMs). Recently, Torabi (2012b, 2013) considered the use of DC method in the areas

of Poisson spatial and spatio-temporal models, respectively. Thus, the DC approach is

well suited to offer a frequentist approach for the analysis of binomial spatio-temporal

models.

In this paper, we propose the DC approach in the context of binomial spatio-temporal

models. In our spatio-temporal model, the well-known conditional autoregressive (CAR)

model (Besag et al., 1991) and penalized spline (P-spline) models (Eilers and Marx, 1996)

are used for the spatial and temporal effects, respectively (Section 2). We then describe

how DC can be used to obtain estimate of model parameters and also to predict the odds

(Section 3). In Section 4, the performance of the proposed approach is evaluated using

a real dataset of yearly number of asthma physician visits by children in the province of

Manitoba, Canada, during 2000-2010, and also by a simulation study. Concluding remarks

are given in Section 5.

2. SPATIO-TEMPORAL MODEL OF ODDS

Let yit be the number of what will be broadly termed “successes" out of nit “trials" for the

ith geographic region at time t, (i = 1, ..., I; t = 1, ..., T ), where yit is the total number of

individuals for whom a binary value is unity. For example, yit is a physician visit in our

application and nit stands for the size of a population for whom the binary outcome was

recorded at the individual level. We assume that yit, conditional on pit, has a binomial

distribution with parameters nit and pit, where pit denotes the probability of success. One
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may use a Poisson approximation to the binomial if events are rare. However, in many

health service settings, events such as physician visits are not rare. A generalized additive

spatio-temporal model is then given by

logit(pit) ≡ log{pit/(1− pit)} = m+ S(t) + ηi + θit, (1)

where m reflects the overall mean log-odds over time and region, S(t) is the effect of

time t, ηi represents spatial structure of region i, and θit is the interaction between the

spatial and temporal effects. The P-spline models (Eilers and Marx, 1996) are used to

account for the temporal effects denoted by S(t). With the overall mean log-odds, m, in

our model, the P-spline is provided without an intercept. In this case, S(t) is given by

S(t) = β1t+ β2t
2 + ...+ βpt

p +
K∑
k=1

γk(t− κk)
p
+, (2)

where p is the degree of spline, (t)p+ denotes the function tpI{t>0}, κ1 < ... < κK is a

set of fixed knots, β = (β1, ..., βp)
′ and γ = (γ1, ..., γK)

′ with γk
i.i.d.∼ N(0, σ2

sp) are the

coefficient vectors for the parametric and spline parts of the model, respectively. It is well

known that with spreading out the location of knots sufficiently over the range of t and

with large enough K, the class of functions S(t) is very large and can approximate most

smooth functions (Eilers and Marx, 1996; De Boor, 2001). It is recommended to use the

number of spline knots (K) as the minimum of 40 and the number of unique t’s divided

by 4 (Ruppert, 2002); we also use this criterion in our paper. We refer to Ruppert et al.

(2003) for more details of P-spline models.

To capture the spatial random effects ηi, a CAR model is employed. A variety of

CAR models may be used by taking a collection of mutually compatible conditional

distributions p(ηi|η−i), i = 1, ..., I, where η−i = {ηj : j ̸= i, j ∈ ∂i} and ∂i refers a set of

neighbors for the ith region (Besag et al., 1991). We consider the following general model

5



for the spatial effects ηi,

η = (η1, ..., ηI)
′ ∼ N(0,Ση), (3)

Ση = σ2
η(NI − ληD)−1P,

where P is a I × I diagonal matrix with elements Pii = 1/ei; D is a I × I matrix with

elements Dij = 1/ei if region i and j are adjacent and Dij = 0 otherwise, where ei is the

number of regions which are adjacent to region i; σ2
η is the spatial dispersion parameter;

λη measures the conditional spatial dependence, λmin ≤ λη ≤ λmax, where λ−1
min and λ−1

max

are the smallest and largest eigenvalues of P−1/2DP 1/2; and NI is an identity matrix

of dimension I (Cressie and Chand, 1989; Stern and Cressie, 1999). One may define the

interaction effect of space and time, θit, as δit or Si(t) or simply i.i.d. Normal distribution,

depending on the nature of dataset (Bernardinelli et al., 1995; MacNab and Dean, 2001;

Silva et al., 2008; Torabi and Rosychuk, 2012). Note that δi is the coefficient of the linear

temporal effect related to the ith region, and Si(t) is a temporal P-spline for specific

region i.

3. LIKELIHOOD-BASED INFERENCE

Let y = (y11, ..., y1T , ..., yI1, ..., yIT )
′ be the observed data vector and assume that the ele-

ments of y are conditionally independent given the random effects ,V = (η1, ..., ηI , γ1, ..., γK ,

θ11, ..., θIT )
′
, and drawn from a binomial distribution with parameters α1 = (m,β1, ..., βp).

It is also assumed that distribution for V depends on parameters α2 which includes

λη, σ
2
η, σ

2
sp and related parameter(s) from θit. The goal of the analysis is to estimate the

model parameters α = (α1,α2)
′, and provide prediction (and prediction interval) of the

odds over space and time as a function of V .

As the DC approach uses Bayesian tools, we first review standard Bayesian approach
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for inference in hierarchical models. We denote L(α;y) as likelihood of α given y as

L(α;y) =

∫
f(y|V = v,α1)g(V = v|α2)dv,

where f(·) and g(·) denote binomial and multivariate Normal distributions, respectively.

Let π(α) be prior distribution of model parameters α. One can then write the posterior

distribution π(α|y) as

π(α|y) = L(α;y)π(α)

C(y)
, (4)

where C(y) =
∫
L(α;y)π(α)dα is the normalizing constant. One can use Markov chain

Monte Carlo (MCMC) algorithms to generate random variates from the posterior distri-

bution π(α|y) without computing the integrals in the numerator or the denominator of

(4)(Gilks et al., 1996; Spiegelhalter et al., 2004).

In the DC method, we use the Bayesian computational approach for frequentist pur-

poses. In particular, the observations y is repeated independently by J different indi-

viduals and all these individuals obtain exactly the same set of observations y called

y(J) = (y,y, ...,y). The likelihood function for the combination of the data from these J

independent experiments is then given by {L(α;y)}J . Note that this likelihood function

has two important features: a) the location of the maximum of this function is exactly

equal to the location of the maximum of L(α;y) and b) the Fisher information matrix

based on this likelihood is J times the Fisher information matrix based on L(α;y), (Lele

et al., 2010). Denote α̂ as MLE and I(α̂) as corresponding Fisher information matrix

based on L(α;y). It is assumed that the parameters are identifiable and that there is

a unique mode (but possibly multiple smaller peaks) to the likelihood function. The

posterior distribution of α conditional on the data y(J) is then given by

πL(α|y(J)) =
{L(α;y)}Jπ(α)

C(y(J))
, (5)
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where C(y(J)) =
∫
{L(α;y)}Jπ(α)dα is the normalizing constant. The following Theo-

rem 1 shows that how one can use the likelihood of J copies of the original data to make

an inference based on the MLE.

Theorem 1. Consider the general models (1)-(3). Under some regularity conditions,

the distribution in (5) converges to a multivariate Normal distribution with mean equal

to the MLE of the model parameters and variance-covariance matrix equal to 1/J times

the inverse of the Fisher information matrix for the MLE.

Proof : The proof follows along the lines of Walker (1969) and Lele et al. (2010), and

is omitted for simplicity.

Hence, the sample mean vector of the generated random numbers from (5) provides

the MLE of the model parameters and J times their sample variance-covariance matrix

is an estimate of the asymptotic variance-covariance matrix for the MLE α̂. There are

also various checks to determine the adequate number of clones J (Lele et al., 2010).

For instance, one may plot the largest eigenvalue of the posterior variance as a function

of the number of clones J to determine if the posterior distribution has become nearly

degenerate. As another criterion, it is approximately correct that as we increase the

number of clones, we have

(α− ᾱ)
′
W−1(α− ᾱ) ∼ χ2

d, (6)

where W is the variance of the posterior distribution and d is the dimension of α. One

may also compute the following two statistics: (a)ζ = 1
B

∑B
q=1(Oq −Qq)

2, where Oq and

Qq are observed and estimated quantiles for χ2
d random variable, and (b) r̃2 = 1 − ρ2,

where ρ is the correlation between (O,Q). If these two statistics are close to zero, it

indicates that the approximation (6) is feasible.

In this paper, the independent Normal distribution prior is assigned for fixed effects
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with zero mean and variance 106 and gamma distribution for the inverse of variance

components with shape and scale parameter 0.001. Because the DC is invariant to the

priors, one may use different priors. To monitor the convergence of the model parameters,

we use several diagnostic methods implemented in the Bayesian output analysis (BOA)

program (Smith, 2007), a freely available package created for R (R Development Core

Team, 2012). We also use three diagnostic methods implemented in the R package dclone

(Sólymos, 2010), which were described in this section, to monitor the convergence of the

model parameters in terms of number of clones J (Lele et al., 2010).

3.1. Prediction of odds

Prediction of odds (or random effects), particularly from the frequentist viewpoint, is

usually problematic. If the parameters α are known, one can use the conditional distri-

bution of O = (O11, ..., O1T , ..., OI1, ..., OIT )
′, the latent variables, given the observed data

to predict the odds where Oit = pit/(1− pit) is odds at region i and time t. That is, one

can use π(O|y,α∗) where α∗ is the true value of the parameter. A naive approach, when

α is estimated using the data, is to use π(O|y, α̂). This approach, however, does not take

into account the variability introduced by the model parameters estimate. An approach

that has been suggested in the literature (e.g., Hamilton, 1986; Lele et al., 2010) is to use

the following density:

π(O|y) =
∫
f(y|O)g(O|α)ϕ(α, α̂, I−1(α̂))dα

C(y)
, (7)

where f(·) and g(·) are binomial and multivariate Normal distributions, respectively, and

ϕ(., µ,Σ) denotes a multivariate Normal density with mean µ and variance Σ, which are

equal to the MLE and inverse of the Fisher information matrix here. In this paper, we

obtain prediction and prediction interval of the O using the density in equation (7) along

with MCMC sampling; noting that one can also use the same approach to predict, for
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example, exp(ηi + θit), (i = 1, ..., I; t = 1, ..., T ).

4. APPLICATION

4.1. Data analysis

To evaluate the performance of the proposed approach, a yearly dataset of childhood

(age ≤ 20 years) asthma physician visits in the Canadian province of Manitoba during

the 2000-2010 fiscal years is used. The population of Manitoba was stable during the

study period from 1.15 million in 2000 to 1.20 million in 2010, with an average popu-

lation of children of around 335 000. The province consisted of eleven Regional Health

Authorities that were responsible for the delivery of health care services. These eleven

regions were further sub-divided into 56 Regional Health Authority Districts (RHADs)

and these RHADs are the geographic units used in our model and all data were linked

to these geographic boundaries. For simplicity, we call these RHADs 1,2,...,56. The num-

ber of children asthma physician visits totaled 736 106 over the study period with mean

and median number of yearly visits per region of 1 314 and 450 (range 59 to 44 090),

respectively. The regional child population sizes varied from 290 to 175 300, with mean

and median numbers of 5 998 and 2 488, respectively. We first present the provincial

rate of children asthma physician visits over time. Figure 1 shows that the rates slightly

decreased over time from 0.26 in 2000 to 0.22 in 2010.

“Figure 1 around here”

We then fit the model (1) to the dataset of children asthma physician visits, with cubic

P-spline and two knots, using the DC method. The adequacy of spatio-temporal model (1)

for this dataset was checked by comparing the model (1) with spatial or temporal model.

Following Ponciano et al. (2009), we use model selection based on the information criteria
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for this purpose. In particular, to compare two models, one can write AIC1 − AIC2 =

−2ln( L̂1

L̂2
) + 2(d1 − d2), where AIC stands for Akaike Information Criteria, Li is the

likelihood for model i(i = 1, 2), d1 and d2 are the number of parameters estimated under

models 1 and 2, respectively (Burnham and Anderson, 2002; Ponciano et al., 2009). We

define the spatial model (only m and ηi in (1)) as model 1, the temporal model (only

m and S(t) in (1)) as model 2, and the spatio-temporal model (1) as model 3. We then

have the following results for our dataset: AIC1 − AIC3 = 2.18, AIC2 − AIC3 = 3.48.

As indicated in Ponciano et al. (2009), because these differences are positive we can

conclude that the spatio-temporal model (1) provides a better description of the data

than models with only spatial or only temporal effects. The AIC differences greater than

2 are generally thought to be significant, and differences greater than 3 very significant

(Burnham and Anderson, 2002; Taper, 2004; Ponciano et al., 2009).

It is also well-known that the variance components can be heavily biased if there is

a large number of fixed effects in the mixed model. Hence, we offer the bias correction

of variance components using jackknife (α̂2JK) as α̂2JK = Zα̂2 − (Z − 1)¯̂α2JK , where

¯̂α2JK = Z−1
∑Z

z=1 α̂2,−z, Z = IT , and α̂2,−z is the estimates of α2 using DC with

deleting the information of zth cell (Jiang, 2007). The PQL approach is also studied in

our data analysis because this approximation method has been widely used in the context

of binomial spatio-temporal model as a frequentist approach. Table 1 reports the model

parameters estimates and corresponding standard errors for DC, Hierarchical Bayes (HB),

and PQL approaches; noting that we used θit
i.i.d.∼ N(0, σ2

θ) which was found useful in our

exploration of the data. It seems that the standard errors for some model parameters in

DC method are smaller than the other two methods, noting that the PQL based estimate

for the conditional spatial dependence (λη) is too high compared to the corresponding

values in the DC and HB approaches. Also, the estimates of spatial dispersion (σ2
η) and

spline dispersion (σ2
sp) in the PQL method are not comparable with the corresponding
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estimates in the DC and HB approaches. The standard error of the spline dispersion (σ̂2
sp)

for the HB is also unusually high compared to the corresponding values in the DC and

PQL methods. We will further evaluate the performance of these methods in section 4.2

through a simulation study.

“Table 1 around here”

The necessary requirements were also checked in terms of the convergence of model

parameters and the number of clones. For instance, Figure 2 shows that the scaled vari-

ances decrease at a 1/J rate and reach a lower bound (say < 0.05) which shows that

the DC approach has converged. For this application, the number of clones was J = 40

to obtain MLE, and 50,000 iterations for the convergence of the model parameters. We

also compared the computational costs for the DC and HB methods. For example, the

computing time for the HB method was about 48 s, whereas for the DC method with

J = 40 was about 1516 s. It is true that the DC computation is more intensive than the

HB approach, however, it is the cost of getting a likelihood-based method (MLE) and

also providing prediction (and prediction interval) of random effects which has been a

challenge from the frequentist perspective.

“Figure 2 around here”

For a diagnostic analysis, we calculated the deviance residual (McCullagh and Nelder,

1989) as

dit = sgn(yit − nitpit)
[
2
{
yit log(

yit
nitpit

) + (nit − yit) log(
nit − yit

nit − nitpit
)
}]1/2

,
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where

sgn(z) =


1 z > 0

0 z = 0

−1 z < 0

.

Figure 3 gives the residuals versus predicted odds diagnostic plot based on the DC

approach. It is clear from Figure 3 that there is no serious lack of fit in our model.

“Figure 3 around here”

Figure 4 reveals estimates of the overall odds over time, exp(m+
∑3

j=1 βjt
j+

∑2
k=1 γk(t−

κk)
3
+), using the DC approach. It shows that over the study period, departures from lin-

earity are observed with an overall decrease in asthma visit odds. The change in the

estimated probability of asthma shows a sharp decrease particularly from 2000 to 2001

and also from 2004 to 2008, and an increase from 2008 to 2010; noting that the RHADs

29, 33, and 38 had high influence to increase the overall odds from 2008 to 2010.

“Figure 4 around here”

One of the main features of the DC approach is the ability to predict the random

effects from the frequentist perspective. To have a better understanding of the spatial

variation, we obtained the spatial distribution of the area effects over time as exp(ηi+θit)

using the DC approach; this provides identification of those RHADs experiencing large

differing temporal effects with respect to the overall spline. Figure 5 presents maps of

the estimated spatial effects based on the fitted model, where the regional risk factor

of asthma visits corresponds to some selected years (2001, 2006, and 2010). The overall

spatial pattern suggests that some RHADs in the south part of the province had relatively

high odds of children asthma visits. Generally, the spatial pattern does not change much

over time; although some RHADs had higher odds estimate in 2010 compared to 2001
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(e.g., RHADs 37, 38, and 40) and some RHADs had lower odds estimate in 2010 compared

to 2001 (e.g., RHADs 14, 18, and 20).

“Figure 5 around here”

We also provided the regional odds estimate of asthma visit obtained from fitting

the spatio-temporal mixed model given by exp(ηi + θit). Figure 6 plots the fitted odds

of asthma visits with corresponding 95% prediction intervals, for example, for RHADs

7, 21, 24, and 39. The standardized crude odds estimates are yit/rt(nit − yit), where

rt =
∑

i yit/
∑

i(nit − yit), and are also plotted in Figure 6. As expected in Figure 6, our

odds estimates of asthma visits provide smoothed estimates while crude odds are unstable

over time.

“Figure 6 around here”

4.2. Simulation study

We also conducted a simulation study to evaluate the performance of ML estimates, via

DC approach, and compare it with the PQL and HB approaches using a scenario similar

to our children asthma dataset. More specifically, data are generated from the model

(1) with the parameters (m,β1, β2, β3, σ
2
η, λη, σ

2
sp, σ

2
θ) listed in Table 2. The neighborhood

structure and the population sizes are exactly as for the asthma dataset. Estimates are

obtained for the DC, PQL, and HB methods using 1000 datasets generated from the

mixed binomial model (1).

The mean values of the model parameters estimates, the standard deviation of the

estimated parameters and mean values of the estimated standard errors are presented

in Table 2. It seems that the estimates of model parameters in DC approach are rea-

sonably unbiased, and their standard errors are also estimated well with comparing the
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estimated standard errors with the corresponding simulated values, noting that the vari-

ance components were corrected using the jackknife method. However, the estimate of

model parameters is heavily biased for the PQL method, and the standard errors of model

parameters estimate are not comparable with the corresponding simulated values. The

model parameters estimate of the HB method is also biased, although the standard errors

of model parameters estimate are generally comparable with the corresponding simulated

values except the spline dispersion. Overall, it seems that the DC approach, which yields

to MLE, provides good point estimates and standard errors for this data analysis.

“Table 2 around here”

5. Conclusion

For fitting complex models in the context of spatio-temporal, the Poisson approximate to

binomial distribution may be appropriate for rare disease. However, in studies of health

system services, using Poisson baseline structure may not be appropriate as events are

not typically rare. Consequently, we need to use spatio-temporal modeling of odds and

study risk factors in the mixed binomial model setting.

The frequentist analysis of the mixed binomial model is computationally difficult. It

has been shown that, for example, penalized quasi-likelihood performs poorly for the

binomial setting. Analysis based on data cloning (DC) has overcome the computational

difficulties of the maximum likelihood (ML) method.

Using the DC, we have proposed a frequentist approach for spatio-temporal analysis

of the binomial setting that focused on the mapping of area level odds of disease. The

model accommodated a CAR model for the spatial random effects and penalized spline

smoothing over the temporal effects. The model can be also easily extended to include

some covariates directly, which may be required for some applications. We used the DC
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method which yields to MLE to estimate the model parameters with correcting variance

components using the jackknife method, and also to provide prediction (and prediction

interval) of the odds over space and time. As another advantage of the DC approach is that

the non-estimable parameters are flagged automatically (Lele et al., 2010). In particular,

we considered the model (1) with incorporating an i.i.d. regional random variable with

Normal distribution and then fitted it to the dataset in Section 4.1 and observed that

with increasing number of clones, the variances of posterior distribution also increase.

Based on the model estimates, it was suggested that the odds of children asthma

physician visits were decreasing over the study period. However, some RHADs in the

south part of province had slightly higher odds of asthma for children compared to the

north. It may be due to limited health services such as general physicians in the north

part of the province. These findings may represent real changes or different distributions

of important covariates that are unmeasured and unadjusted for in our modeling. Further

investigation is needed to explore these findings.

In our childhood asthma physician visits, we assumed that the physician visits were

independent from each other, however, we had some cases who visited physicians multiple

times within a given year. In fact, the mean and median number of yearly readmissions

per region were 1.9 and 1.1 (range 1 to 4.4), respectively. We have planned to study this

kind of data more appropriately in a separate manuscript.

Our proposed DC approach is very general in the context of mixed binomial model

setting. In this paper, we used CAR and penalized spline models for spatial and temporal

effects, respectively; however, one may consider other variants of spatial and temporal

effects; for example, CAR model (MacNab and Dean, 2001) for spatial random effects

and AR model (Torabi and Rosychuk, 2010) for temporal random effects.
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Fig.2. Data cloning convergence diagnostics for asthma physician visit study dataset.
The standardized maximum eigenvalues (solid line) converge to zero at the expected rate
1/J (dashed line)
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Table 1
Parameter estimates (and standard errors), spatio-temporal mixed binomial model for
maximum likelihood estimation via data cloning (DC-MLE), penalized quasi-likelihood
(PQL), and hierarchical Bayesian (HB) methods, childhood asthma physician visits in
the province of Manitoba, Canada, during 2000–2010

Parameter Estimate (standard error)

DC-MLE PQL HB
m -1.110(0.812) -1.101(0.821) -1.123(0.818)
β1 -0.114(0.064) -0.124(0.080) -0.118(0.058)
β2 -0.183(0.063) -0.195(0.081) -0.188(0.060)
β3 -0.131(0.067) -0.113(0.076) -0.137(0.069)
σ2
η 0.253(0.091) 0.069(0.016) 0.499(0.106)

λη 0.814(0.001) 4.817(0.518) 0.997(0.003)
σ2
sp 0.194(0.168) 0.0001(0.005) 1.686(17.707)
σ2
θ 0.041(0.003) 0.118(0.007) 0.042(0.003)
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Fig.3. The deviance residuals versus predicted odds diagnostic plot of childhood asthma
physician visits based on the data cloning approach
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Fig.4. Overall odds of asthma physician visits by children and corresponding 95% pre-
diction bands based on the data cloning approach

Table 2. Mean values of the model parameters estimates, the standard deviation of the
estimated parameters and mean values of the estimated standard errors of maximum
likelihood estimation via data cloning (DC-MLE), penalized quasi-likelihood (PQL), and
hierarchical Bayes (HB) methods based on 1,000 simulated datasets

DC-MLE PQL HB
Parameter Mean Standard error Mean Standard error Mean Standard error

DC-MLE Simulated PQL Simulated HB Simulated
m =-1.10 -1.101 0.815 0.815 -1.096 0.820 0.785 -1.104 0.818 0.816
β1 =-0.12 -0.120 0.086 0.086 -0.122 0.085 4e−6 -0.121 0.087 0.087
β2 =-0.19 -0.193 0.082 0.083 -0.190 0.082 4e−6 -0.194 0.084 0.084
β3 =-0.14 -0.140 0.063 0.065 -0.143 0.063 3e−6 -0.140 0.064 0.066
σ2
η =0.50 0.528 0.164 0.167 -0.001 0.114 1e−7 0.864 0.179 0.174

λη =0.40 0.416 0.258 0.270 0.400 0.037 1e−7 0.466 0.263 0.254
σ2
sp =0.10 0.096 0.030 0.046 0.0001 0.066 1e−8 0.133 0.168 0.069
σ2
θ =0.04 0.040 0.003 0.003 -0.001 0.003 1e−7 0.041 0.003 0.003
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Fig.5. Maps of the odds estimate of asthma visits for the spatial effects for some selected
years (2001, 2006, and 2010) based on the data cloning approach; Manitoba childhood
asthma data (2000-2010). Major urban centre (Winnipeg region) is provided as inset
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Fig.6. Plots of the standardized crude odds and estimated odds of asthma visits for the
selected RHADs 7, 21, 24, and 39 during 2000–2010. The solid black line represents fitted
odds with the blue and red lines as 95% prediction bands; the dashed line represents the
crude odds
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