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Summary

Spatial models have been widely used in the public health set-up. In the case of con-
tinuous outcomes, the traditional approaches to model spatial data are based on the
Gaussian distribution. This assumption might be overly restrictive to represent the
data. The real data could be highly non-Gaussian and may show features like heavy
tails and/or skewness. In spatial data modeling, it is also commonly assumed that
the covariates are observed without errors, but for various reasons such as measure-
ment techniques or instruments used, uncertainty is inherent in spatial (especially
geostatistics) data and so these data are susceptible to measurement error in the
covariates of interest. In this paper, we introduce a general class of spatial models
with covariates measurement error that can account for both heavy tails, skewness,
and also uncertainty of the covariates. A likelihood method, which leads to maxi-
mum likelihood estimation approach, is used for the inference through Monte Carlo
Expectation-Maximization algorithm. The predictive distribution at non-sampled
sites is approximated based on Markov chain Monte Carlo algorithm. The proposed
approach is evaluated through a simulation study and also by a real application
(particulate matters dataset).
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1 INTRODUCTION

One of the main difficulty faced by spatial data analysis (especially geostatistical data) is to adjust for non-

Gaussianity feature. This feature may manifest itself in the exploratory data analysis by demonstrating heavy tail
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or skewness. Heavy tails can be caused by special cases which have extreme values compared to their neighboring

observation, while asymmetry in the distribution of the response (as another non-Gaussianity’s symptoms) may be

caused by skewness. The presence of skewness arises in many studies including the spatial prediction problems.

Again, in such a setting, to describe the characteristics, normality may not be a realistic assumption. In addition,

a real data may contain the presence of outliers and skewness simultaneously. Some examples of such data can be

found in Zareifard and Khaledi (2013), Tadayon and Khaledi (2015) and Tadayon (2017). A widely used approach

to take data sets with non-Gaussian characteristics into account is to find some non-linear transformation (e.g., a

log transformation or a transformation from the Box-Cox family) for the data to satisfy the assumption of normal-

ity. However, in general, an appropriate transformation may not exist or may be difficult to find. In addition to the

problem of choosing an appropriate transformation, the transformed variables are sometimes difficult to interpret

(Kim & Mallick 2004). By applying a transformation, the mean field will also affect the resultant covariance struc-

ture (Wallin & Bolin 2015). Evidently the situation is also exacerbated in multivariate settings with several spatial

response variables since it is hard to provide a joint transformation of the entire process into a Gaussian process. In

addition, the back-transformed fitted model produces severely biased estimates (Cressie 1993; Miller 1984). In the

recent years, authors have developed more suitable theoretical strategy to handle some of the potential weaknesses

associated with the transformation method.

Modeling of non-Gaussian geostatistical data based on a process with fat-tailed finite-dimensional distributions

was studied by Palacios and Steel (2006). They introduced a Gaussian-log-Gaussian (GLG) model that accommo-

dates non-Gaussian tail behavior in space. Their proposed model which is based on a scale mixing of a Gaussian

process, leads to the Gaussian model as a limiting case. They also adopted the Matèrn class for the spatial cor-

relation structure (Stein 2012) and used a Markov chain Monte Carlo (MCMC) algorithm to perform Bayesian

inference. More details on the GLG model can be found in Steel and Fuentes (2010). Modeling of spatial data with

heteroscedasticity in space or time has been studied by Fonseca and Steel (2011) wherein the finite dimensional

distributions have heavier tails than the normal distribution. They extended the ideas in Palacios and Steel (2006)
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to processes in space and time and also considered similar mixing in the nugget effect component to accommo-

date individual outliers. Indeed, in their model, the non-Gaussian behavior was induced by correlated mixing in

the spatio-temporal process both in time and space and uncorrelated mixing in the nugget effect. However, this

approach is suitable only for symmetric heavy tail distributions and will fail to handle the skewed data. Recently,

Bueno, Fonseca, and Schmidt (2017) studied a GLG spatio-temporal model based on spatially varying covariates.

When the observed data have a skew distribution, again an initial strategy is to make data transformation (De-

Oliveira, Kedem, & Short 1997). The issues associated with the transformation method has received considerable

attention in the literature. This led to introduce more suitable theoretical strategies based on the skew-normal (SN)

distribution (see e.g., Azzalini 1985; Azzalini and Capitanio 1999; Azzalini and Dalla-Valle 1996; Azzalini 2013)

which resulted to numerous developments that sometimes confusing which class of SN model needs to be used.

With this view in mind, Arellano-Valle and Azzalini (2006) introduced a SN model and named it unified skew-

normal (SUN) which also includes the normal density and has very similar properties as normal density. We will

review this model in more detail in Section 2.

On the other hand, in order to circumvent the problem of departure from normality in the spatial domains, many

authors concentrated on the introduction of stationary stochastic processes, whose finite-dimensional marginal dis-

tributions are multivariate skew-normal. To handle skewed spatial data, Kim and Mallick (2004) defined a skew

Gaussian random field based on the multivariate skew normal distribution. With the aim of introducing a spatial

skewed Gaussian process, Allard and Naveau (2007) used the multivariate closed SN distribution which also has

closed forms under marginalization and conditioning. Another example of a stationary stochastic process in the

spatial domain with univariate SN marginal distributions was given by Zhang and El-Shaarawi (2010), exploiting

one of the stochastic characterizations of the SN distribution. In particular, the authors used 𝑋0 (𝑠) as a stationary

Gaussian process with standardized marginals in place of normal random variable 𝑋0 in the multivariate exten-

sion of skew-normal distribution defined by Azzalini and Dalla-Valle (1996) and considered an extension of the

SN distribution to a stationary process. For more details about the skew-Gaussian spatial random fields, we refer

interested readers to Genton and Zhang (2012).
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The unified skew GLG model which recently proposed by Zareifard and Khaledi (2013) offers a more flexible

class of sampling spatial models to account for both skewness and heavy tails which are two pervasive features of

the spatial data. Since the likelihood function involves analytically intractable integrals and direct maximization of

the marginal likelihood is numerically difficult, they developed a likelihood-based approach for the inference and a

stochastic approximation version of EM algorithm for estimating the model parameters. Tadayon (2017) used this

model to take censored spatial data into account in analyzing rainfall records.

In spatial data modeling, it is commonly assumed that the covariates have been observed precisely, but for various

reasons such as the measurement techniques or instruments used, uncertainty is inherent and so these data are

susceptible to measurement error in the covariate of interest. For example in environmental studies, the pollution

level, e.g., nitrite concentration in groundwater or precipitation and wind speed are measured with error. In such a

setting, the results provided by ignoring the measurement error can be biased and unreliable. In the recent years,

some authors have suggested to accommodate measurement error in the spatial context. Li, Tang, and Lin (2009)

proposed a new class of linear mixed models for spatial data in the presence of covariate measurement errors. In

particular, they showed that the regression estimates obtained from naive use of a proxy variable are attenuated

while the naive estimators of the variance components are inflated. The authors also, by taking measurement error

into account, developed a structural modeling approach to obtain the maximum likelihood estimation (MLE) of

model parameters and studied its large sample properties. Le-Gallo and Fingleton (2012) considered the case of

cross-sectional spatial regression models with measurement errors in the explanatory variables and demonstrated

that measurement error in an independent variable as one reason why ordinary least squares estimates may not

be consistent. Militino, Ugarte, Iribas, and Lizarraga-Garcia (2013) studied to address the quality of the Global

Positioning System (GPS) measurements using a likelihood-based approach for the analysis of positional errors

based on a spatial linear mixed model. In line with what observed in Li et al. (2009), Huque, Bondell, and Ryan

(2014) showed that the presence of covariate measurement error can lead to significant sensitivity of parameter

estimation to the choice of spatial correlation structure. However, their approaches require correct specification of

the true covariate measurement error variance. In contrast, Huque, Bondell, Carroll, and Ryan (2016) presented an
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approach which is robust in the sense that it neither assumes that the covariate measurement error is known nor

depends on any particular kind of spatial correlation structure. In fact, they developed a semi-parametric framework

to obtain a consistent estimate of the true regression coefficients when covariates are measured with error. Alexeeff,

Carroll, and Coull (2016) proposed a new spatial simulation extrapolation (SIMEX) procedure and derived the

biases induced by estimation error and by model misspecification in the exposure model. For more details in this

subject, see Gryparis, Coull, and Schwartz (2007), Szpiro, Sheppard, and Lumley (2011), Sheppard et al. (2012)

and Thomas (2013).

The aim of this paper is to provide a more flexible modeling of spatial data which can be used for non-Gaussian

data wherein the covariates of interest cannot be observed precisely. In particular, our model provides flexibility in

capturing the effects of skewness and heavy tails behavior of the data and simultaneously facilitates representing

and taking fuller account of the susceptibility of measurement error in covariates. As measurement error (ME) is

commonly due solely to instrument or laboratory-analysis error in geostatistical data, the classical measurement

error model appears appropriate for this situation as we would expect the surrogate measure to be randomly dis-

tributed around the true value. The unobserved covariates can be treated as fixed parameters (called functional

ME) or random variables (called structural ME). In this paper, we focus on structural ME which may lead to more

efficiency (Buzas, Stefanski, & Tosteson 2014) in the context of geostatistical data. In this paper, a likelihood-

based approach is used for the inference. In a nutshell, our major contribution on this paper is to account for the

uncertainty of covariates measured with error in the context of spatial models with non-Gaussian data.

The rest of the paper is organized as follows. In Section 2, a class of spatial model for non-Gaussian data with

structural ME covariates is proposed. We use a likelihood-based approach, which leads to the MLE, to estimate the

model parameters and corresponding variances (Section 3). Spatial prediction is studied in Section 4. Performance

of the proposed approach is evaluated through a simulation study (Section 5) and also by a real data application

(particulate matters dataset from Iran) (Section 6). Concluding remarks are given in Section 7. Technical details

are deferred to the Appendix.
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2 MODEL FORMULATION

Following Zareifard and Khaledi (2013), let 𝑌
(
𝑠𝑖
)

be the response variable at location 𝑠𝑖 in the spatial region. We

assume that for 𝑖 = 1, 2,… , 𝑛,

𝑌
(
𝑠𝑖
)
= 𝛽0 +𝑋′ (𝑠𝑖)𝜷𝑥 + 𝑊

(
𝑠𝑖
)√

𝜆
(
𝑠𝑖
) + 𝜀

(
𝑠𝑖
)
, (1)

where 𝛽0 represents the intercept term, 𝜷𝑥 =
(
𝛽1, 𝛽2,… , 𝛽𝑘

)′ are unknown parameters with corresponding 𝑋 (⋅)

as a random vector of error-prone covariates, 𝜀 (⋅) denotes an uncorrelated Gaussian process with zero mean and

known variance 𝜎2 to avoid overparameterization and identifiability problems, and 𝝀 (⋅) is a log-Gaussian stochastic

process. The 𝐖 (⋅) =
(
𝑊

(
𝑠1
)
,… ,𝑊

(
𝑠𝑛
))′ is a SUN process with the skewness parameter 𝛼 and the scale

parameter 𝛾 which is denoted by

𝑆𝑈𝑁𝑛,𝑛
(
𝟎𝑛, 𝟎𝑛,

[
𝛾2 + 𝛼2

]
𝐶𝜃 , 𝐶𝜃 , 𝛼𝐶𝜃

)
, 𝛼 ∈ ℜ, 𝛾 ∈ ℜ+, (2)

where 𝐶𝜃 is a spatial correlation matrix. More precisely, Arellano-Valle and Azzalini (2006) introduced a SUN

process as follows. Suppose that 0 and 1 be two random vectors of dimensions 𝑚 and 𝑛, respectively, such that

⎡⎢⎢⎢⎢⎣
0

1

⎤⎥⎥⎥⎥⎦
∼ 𝑁𝑚+𝑛

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
𝜑0

𝜑1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
Γ Δ′

Δ Ω

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
, (3)

where 𝜑0 ∈ ℜ𝑚 and 𝜑1 ∈ ℜ𝑛 are mean vectors, Γ ∈ ℜ𝑚×𝑚 and Ω ∈ ℜ𝑛×𝑛 are variance-covariance matrices

and Δ =
(
𝛿1,… , 𝛿𝑛

)′ ∈ ℜ𝑛×𝑚. Then, the n-dimensional random vector  is said to have the multivariate SUN

distribution if  𝑑
=1

||0 > 𝟎𝑚 , where 𝟎𝑚 is a 𝑚 × 1 vector of 0’s. This distribution which has the density

𝑓𝑆𝑈𝑁𝑛,𝑚
(g) = 𝜙𝑛

(
𝜑1,Ω

)
Φ𝑚

(
𝜑0 + Δ′Ω−1 (g − 𝜑1

)
,Γ − Δ′Ω−1Δ

)
∕Φ𝑚

(
𝜑0,Γ

)
, (4)

is denoted by 𝑆𝑈𝑁𝑛,𝑚
(
𝜑1, 𝜑0,Ω,Γ,Δ

)
, where 𝜙 (⋅) and Φ (⋅) represent normal density and normal cumulative dis-

tribution function, respectively. The density in (4) reduces to the 𝑛-variate normal density function 𝜙𝑛
(
g;𝜑1,Ω

)
when Δ = 𝟎𝑛×𝑚, noting that 𝟎𝑛×𝑚 is a 𝑛 × 𝑚 matrix of zeros. Arellano-Valle and Azzalini (2006) presented
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another form of genesis for distribution (4), using a convolution mechanism instead of conditioning in which

a 𝑆𝑈𝑁𝑛,𝑛
(
𝟎𝑛, 𝟎𝑛,

[
𝛾2 + 𝛼2

]
𝑉 , 𝑉 , 𝛼𝑉

)
distribution can be written as 𝛾𝑇0 + 𝛼𝑇1, 𝛾 ∈ ℜ+, 𝛼 ∈ ℜ, where

𝑇0 ∼ 𝑁𝑛
(
𝟎𝑛, 𝑉

)
and 𝑇1 is a 𝑛-variate normal distribution with mean 𝟎𝑛 and variance 𝑉 which is truncated below

at the point 𝟎𝑛. It is obvious that 𝛼 = 0 leads to the 𝑛-variate normal distribution.

Since small values of the mixing variables 𝜆
(
𝑠𝑖
)

lead to locate the corresponding observation 𝑌
(
𝑠𝑖
)

in a region

with larger observational variance relative to the rest, similar to Palacios and Steel (2006), we call these observa-

tions as outliers. Furthermore, we suppose that the random field 𝝍(⋅) ≡ log𝝀(⋅) =
(
log 𝜆

(
𝑠1
)
,… , log 𝜆

(
𝑠𝑛
))′ is

Gaussian with mean − 𝜈
2
𝟏𝑛 (𝟏𝑛 is a 𝑛 × 1 vector of ones) and covariance matrix 𝜈𝐶𝜃 , wherein the scalar parameter

𝜈 is a non-negative value. Regarding the spatial correlation matrix 𝐶𝜃 , it is possible to consider different corre-

lation matrices for 𝐖 (⋅) and 𝝍 (⋅), however, for the purpose of the model complexity reduction, we correlate the

elements of 𝝍 (⋅) through the same correlation matrix as 𝐖 (⋅) which is adopted as an isotropic exponential corre-

lation structure with the correlation function 𝐶𝜃
(‖‖‖𝑠𝑖 − 𝑠𝑗‖‖‖) = 𝐶𝜃 (‖ℎ‖) = exp {−𝜃 ‖ℎ‖} and 𝜃 > 0. Further, this

approach also prevents from the identifiability issue as choosing different correlation structure increases the model

parameters and also model cannot separately identify different correlation.

In the presence of ME one is unable to observe 𝑋𝑖 =𝑋
(
𝑠𝑖
)
, (𝑖 = 1,… , 𝑛), but 𝑍𝑖 =𝑍

(
𝑠𝑖
)

is observed as surro-

gate for the 𝑋𝑖 through 𝑍𝑖 = 𝑋𝑖 + 𝑈𝑖, where 𝑋𝑖 has a normal distribution with mean 𝝁𝑥 and variance-covariance

matrix 𝜎2𝑥𝐼𝑘,𝑈𝑖 =𝑈
(
𝑠𝑖
)

is a random vector from normal distribution with mean 𝟎𝑘 and variance-covariance matrix

𝜎2𝑢𝐼𝑘 with 𝐼𝑘 as the identity matrix of dimension 𝑘, and 𝜎2𝑢 is known (Hoque & Torabi 2018; Torabi 2012; Torabi,

Datta, & Rao 2009). We can then write

(
𝑋′
𝑖 , 𝑈

′
𝑖 , 𝜀𝑖

)′ ∼ 𝑁
([
𝝁′
𝑥, 𝟎

′
𝑘, 0

]′ , 𝑑𝑖𝑎𝑔 (𝜎2𝑥𝐼𝑘, 𝜎2𝑢𝐼𝑘, 𝜎2)) , 𝑖 = 1,… , 𝑛, (5)

where 𝑑𝑖𝑎𝑔
(
𝜎2𝑥𝐼𝑘, 𝜎

2
𝑢𝐼𝑘, 𝜎

2) is a diagonal matrix with the given elements on the diagonal. We also suppose that

the random vector
(
𝑋′
𝑖 , 𝑈

′
𝑖 , 𝜀𝑖

)′ in (5) is independent of the other model components, namely, 𝝀 and 𝐖. Thus, if

𝜎2𝑧 = 𝜎2𝑥 + 𝜎
2
𝑢 , then 𝑍𝑖 ∼ 𝑁𝑘

(
𝝁𝑥, 𝜎2𝑧𝐼𝑘

)
which, using the properties of the SUN distribution (Gupta, Aziz, & Ning

2013), can be rewritten as 𝑍𝑖 ∼ 𝑆𝑈𝑁𝑘,𝑘
(
𝝁𝑥, 𝟎𝑘, 𝜎2𝑧𝐼𝑘, 𝐼𝑘, 𝟎𝑘×𝑘

)
.
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Note that if one assumes 𝜆
(
𝑠𝑖
)
= 𝜆∼𝐺𝑎𝑚𝑚𝑎

(
𝜈
2
, 𝜈
2

)
= 𝜒2

𝜈 ∕𝜈, then the equation (2) can be written as 𝐖 (⋅) ∼

𝑆𝑁𝑛
(
𝛼; 𝟎𝑛,

[
𝛾2 + 𝛼2

]
𝐶𝜃

)
. In such a setting, the distribution of 𝐘=

(
𝑌1,… , 𝑌𝑛

)′ given 𝐗𝑛×𝑘 =
(
𝑋1,… , 𝑋𝑘

)
will

be skew Student-t (SSt) with the skewness parameter 𝛼, mean 𝛽0𝟏𝑛 + 𝐗𝜷𝑥, variance
[
𝛾2 + 𝛼2

]
𝐶𝜃 + 𝜎2𝐼𝑛, and

𝜈 degrees of freedom as 𝐘 |𝐗 ∼ 𝑆𝑆𝑡
(
𝛼, 𝜈; 𝛽0𝟏𝑛 + 𝐗𝜷𝑥,

[
𝛾2 + 𝛼2

]
𝐶𝜃 + 𝜎2𝐼𝑛

)
. Although the SSt model allows

for variance inflation, it increases the kurtosis for the process in every location and does not allow for individual

changes in variability (Palacios & Steel 2006). However, the proposed model allows for spatial variability in 𝜆
(
𝑠𝑖
)

and hence is more flexible.

3 MAXIMUM LIKELIHOOD ESTIMATION

Following the model (1), the likelihood of the observed data (𝐘,𝐙), for 𝐙𝑛×𝑘 =
(
𝑍1,… , 𝑍𝑘

)
given 𝐗,𝝀 can be

written as

𝐿 (𝐘,𝐙 |𝐗,𝝀 ) ∝ 𝐿 (𝐘 |𝐗,𝝀 )𝐿 (𝐙 |𝐗,𝝀 ) , (6)

where 𝐿 (𝐘,𝐙 |𝝀 ) = ∫ 𝐿 (𝐘 |𝐗,𝝀 )𝐿 (𝐙 |𝐗,𝝀 )𝐿 (𝐗 |𝝀 ) 𝑑𝐗. Since we intend to implement the maximum likeli-

hood approach, we first obtain the distributions of 𝐘 |𝐗,𝝀 and 𝐙 |𝐗,𝝀 as follows:

• 𝐘 |𝐗,𝝀 . It can be easily seen that if Λ = 𝑑𝑖𝑎𝑔
(
𝜆
(
𝑠1
)
,… , 𝜆

(
𝑠𝑛
))

, then by (2) we have

Λ− 1
2𝐖 |𝝀 ∼ 𝑆𝑈𝑁𝑛,𝑛

(
𝟎𝑛, 𝟎𝑛,

[
𝛾2 + 𝛼2

]
Λ− 1

2𝐶𝜃Λ
− 1

2 , 𝐶𝜃 , 𝛼Λ
− 1

2𝐶𝜃
)
,

and also 𝜺 |𝝀 ∼ 𝑆𝑈𝑁𝑛,𝑛
(
𝟎𝑛, 𝟎𝑛, 𝜎2𝐼𝑛, 𝐼𝑛, 𝟎𝑛×𝑛

)
. Hence, from (1) and again by using the properties of the

SUN distribution, we can get

Λ− 1
2𝐖+𝜺 |𝝀∼𝑆𝑈𝑁𝑛,2𝑛

(
𝟎𝑛, 𝟎2𝑛,

[
𝛾2 + 𝛼2

]
Λ− 1

2𝐶𝜃Λ
− 1

2 + 𝜎2𝐼𝑛, 𝐶𝜃 ⊕ 𝐼𝑛,
[
𝛼Λ− 1

2𝐶𝜃 , 𝟎𝑛×𝑛
])
,
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where 𝐶𝜃 ⊕ 𝐼𝑛 =

⎛⎜⎜⎜⎜⎝
𝐶𝜃 𝟎𝑛×𝑛

𝟎𝑛×𝑛 𝐼𝑛

⎞⎟⎟⎟⎟⎠
. So if 𝐗∗ =

(
𝟏𝑛, 𝑋1,… , 𝑋𝑘

)
and 𝜷 =

(
𝛽0, 𝜷′

𝑥

)′, then

𝐘 |𝐗,𝝀 ∼ 𝑆𝑈𝑁𝑛,2𝑛

(
𝐗∗𝜷, 𝟎2𝑛,

[
𝛾2 + 𝛼2

]
Λ− 1

2𝐶𝜃Λ
− 1

2 + 𝜎2𝐼𝑛, 𝐶𝜃 ⊕ 𝐼𝑛,
[
𝛼Λ− 1

2𝐶𝜃 , 𝟎𝑛×𝑛
])
. (7)

• 𝐙 |𝐗,𝝀 . Similarly, one can show

𝐙 |𝐗,𝝀 ∼ 𝑆𝑈𝑁𝑘,𝑘
(
𝐗, 𝟎𝑘, 𝜎2𝑢𝐼𝑘, 𝐼𝑘, 𝟎𝑘×𝑘

)
. ■

For brevity, we can write Ω =
[
𝛾2 + 𝛼2

]
Λ− 1

2𝐶𝜃Λ
− 1

2 + 𝜎2𝐼𝑛, Γ = 𝐶𝜃 ⊕ 𝐼𝑛 and Δ =
[
𝛼Λ− 1

2𝐶𝜃 , 𝟎𝑛×𝑛
]
. We also

regard 𝐲 as a realization of 𝐘. Therefore, after some simplification, we can write

𝑓𝐘,𝐙|||𝐗,𝝀 ∝ 𝜙𝑛
(
𝐗∗𝜷,Ω

)
Φ2𝑛

(
Δ′Ω−1𝐲,Γ − Δ′Ω−1Δ

)
𝜙𝑛

(
𝐗∗𝜷, 𝜎2𝑢𝐼𝑛

)
∕Φ2𝑛

(
𝟎2𝑛,Γ

)
∝

Φ2𝑛
(
Δ′Ω−1𝐲,Γ − Δ′Ω−1Δ

)
Φ2𝑛

(
𝟎2𝑛,Γ

) exp
{
−1
2
(
𝐲 − Σ𝝁𝑦

)
Σ−1 (𝐲 − Σ𝝁𝑦

)}
, (8)

where Σ−1 = Ω−1 + 𝜎−2𝑢 𝐼𝑛 and 𝝁𝑦 = Σ−1𝐗∗𝜷. In other words, we have

𝑓𝐘,𝐙|||𝐗,𝝀 ∝ 𝜙𝑛
(
Σ𝝁𝑦,Σ

)
Φ2𝑛

(
Δ′Ω−1𝐲,Γ − Δ′Ω−1Δ

)
∕Φ2𝑛

(
𝟎2𝑛,Γ

)
. (9)

Hence, the likelihood function of 𝜂 =
(
𝛽0,𝜷𝑥,𝝁𝑥, 𝜎2𝑥, 𝛾, 𝛼, 𝜈, 𝜃

)
given the observed sample (𝐘= 𝐲,𝐙= 𝐳 ) is given

by 𝐿 (𝜂 |𝐲,𝐙 ) = ∫ 𝑓𝐘,𝐙|||𝐗,𝝀 𝑑𝑃𝑥𝑑𝑃𝜆, where 𝑃𝑥 and 𝑃𝜆 show the distribution measure of 𝐗 and 𝝀, respectively.

However, we can not maximize the likelihood function of observed data directly as the 𝐿 (𝜂 |𝐲,𝐙 ) is analytically

intractable. Hence, we consider a version of the EM algorithm (Monte Carlo EM) to estimate the model parameters

𝜂. One can show that under some mild regularity conditions, the MCEM converges to the maximum likelihood

estimate (Neath et al. 2013). This method presents a modification of the EM algorithm where the expectation in

the E-step is computed numerically through Monte Carlo simulation.

The basis idea of the algorithm is to use the log-likelihood of the complete data that has not been observed due

to the presence of the latent variables 𝐗, 𝐖 and 𝝀. With regard to the definition of the 𝑆𝑈𝑁 distribution in Section

1, we can rewrite 𝐖 as a sum of two independent random vectors, i.e., 𝐖
𝑑
= 𝑇0 + 𝑇1, where 𝑇0 ∼ 𝑁𝑛

(
𝟎𝑛, 𝛾2𝐶𝜃

)
,
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𝑇1 is 𝑛-variate normal distribution with mean 𝟎𝑛 and variance 𝛼2𝐶𝜃 which is truncated below at the point 𝟎𝑛 (that

is followed by right-skewed responses, i.e., 𝛼 > 0). Hence, the model (1) can be formulated in a matrix form as

𝐘 = 𝛽0𝟏𝑛 + 𝐗𝜷𝑥 + Λ− 1
2
(
𝑇0 + 𝑇1

)
+ 𝜺, 𝐙 = 𝐗 + 𝐔, 𝐔𝑛×𝑘 =

(
𝐮1,… , 𝐮𝑘

)
. (10)

It must be noted that although for now we chose the positive sign for 𝛼, it can be visually determined by the direction

of skewness. This approach works well if the direction of skewness is clear. When the direction of skewness is not

obvious, there is only a limited interest in modeling the dataset with a skew-normal random field. Henceforth, the

complete data will be
(
𝐘,𝐙,𝐗, 𝑇0, 𝑇1,𝝀

)
, where (𝐘,𝐙) are observed data and

(
𝐗, 𝑇0, 𝑇1,𝝀

)
are latent variables.

The complete data log-likelihood function (see Appendix A for details) is given by

𝓁 (𝜂) = log 𝑓𝐘,𝐙|||𝐗,𝑇0,𝑇1,𝝀 (𝐲,𝐙; 𝜷) + log 𝑓𝐗
(
𝐗;𝝁𝑥, 𝜎2𝑥

)
+ log 𝑓𝑇0

(
𝐭0; 𝛾2, 𝜃

)
+ log 𝑓𝑇1

(
𝐭1; 𝛼2, 𝜃

)
+ log 𝑓𝝀 (𝝀; 𝜈, 𝜃) . (11)

To implement the MCEM algorithm, let 𝜂𝑡 be the current (step 𝑡) best guess at the MLE 𝜂̂. The E-step is to compute

the 𝑄-function defined by

𝑄
(
𝜂 ||𝜂𝑡 )= 𝐸

{
𝓁 (𝜂) ||𝐲,𝐙, 𝜂𝑡} = ∫ 𝓁 (𝜂)𝑓

(
𝐗, 𝐭0, 𝐭1,𝝀 ||𝐲,𝐙, 𝜂𝑡 ) 𝑑𝐗𝑑𝐭0𝑑𝐭1𝑑𝝀, (12)

using

𝐗 |𝐙 ∼ 𝑁𝑘
(
𝑎𝐙 + [1 − 𝑎]𝛍𝐱, 𝜎

2
𝑥 [1 − 𝑎] 𝐼𝑘

)
, 𝑎 =

𝜎2𝑥
𝜎2𝑥 + 𝜎2𝑢

. (13)

The M-step is to maximize the 𝑄 with respect to 𝜂 to obtain 𝜂𝑡+1 = argmax
𝜂∈Θ

𝑄
(
𝜂 ||𝜂𝑡 ), where Θ is the parameter

space. Due to the complexity of the conditional expectations in (12), we replace them by corresponding Monte

Carlo approximations. In particular, we can write

𝑄
(
𝜂 ||𝜂𝑡 ) ≈ 1

𝐿

𝐿∑
𝑙=1

𝓁
(
𝜂𝑡; 𝐲,𝐙,𝐗(𝑙), 𝐭(𝑙)0 , 𝐭

(𝑙)
1 ,𝝀

(𝑙)
)
,
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and then an optimization procedure can be employed to maximize𝑄
(
𝜂 ||𝜂𝑡 ) with respect to 𝜂. The two-step process

is repeated until convergence occurs. At the 𝑡𝑡ℎ iteration of the MCEM algorithm, we use the notation 𝔼𝑡𝑖 for 𝑖 =

1, 2,… , 8 to show the approximation of the 𝑖𝑡ℎ conditional expectation in (12), i.e., if
{(

𝐗(𝑙), 𝑇 (𝑙)
0 , 𝑇

(𝑙)
0 ,𝝀

(𝑙)
)}𝐿

𝑙=1
are

samples from the joint distribution 𝑓𝐗,𝑇0,𝑇1,𝝀|||𝐲,𝐙, then the Monte Carlo approximation of 𝐸
[
𝑔
(
𝐗, 𝑇0, 𝑇1,𝝀|| 𝐲,𝐙)]

is given by

𝔼𝑡 = 𝐿−1
𝐿∑
𝑙=1

𝑔
(
𝐲,𝐙,𝐗(𝑙), 𝑇 (𝑙)

0 , 𝑇
(𝑙)
0 ,𝝀

(𝑙); 𝜂𝑡
)
.

For details regarding the updates of the model parameters, see the Appendix B. As the conditional expectations

cannot be evaluated in closed forms, a MCMC algorithm can be used to generate samples from the joint distribution

𝑓
(
𝐗, 𝑇0, 𝑇1,𝝀 ||𝐲,𝐙; 𝜂𝑡 ). To that end, we explore the full conditional distributions as:

∙ 𝐗 ||𝐲,𝐙, 𝐭0, 𝐭1,𝝀 :

𝑓
(
𝐗 ||𝐲,𝐙, 𝐭0, 𝐭1,𝝀; 𝜂𝑡 ) ∝ 𝑓

(
𝐘 ||𝐗, 𝐭0, 𝐭1,𝝀; 𝜂𝑡 ) 𝑓 (

𝐗 ||𝐙; 𝜂𝑡 )
∝ exp

{
− 1
2𝜎2

(
𝐛1 − 𝐗𝜷𝑥

)′ (𝐛1 − 𝐗𝜷𝑥
)
− 1

2𝜎2𝑥 (1 − 𝑎)
(
𝐗 − 𝝁𝑥|𝑧 )′ (𝐗 − 𝝁𝑥|𝑧 )}

∝ exp
{
− 1
2𝜎2𝜎2𝑥 (1 − 𝑎)

[
𝜎2𝑥 (1 − 𝑎) 𝜷

′
𝑥𝐗

′𝐗𝜷𝑥

+ 𝜎2𝐗′𝐗 − 2𝜎2𝐗′𝝁𝑥|𝑧 − 2𝜎2𝑥 (1 − 𝑎) 𝜷
′
𝑥𝐗

′𝐛1
] }

, (14)

where 𝜇𝑥|𝑧 shows the mean of the distribution of 𝐗 |𝐙 in (13) and 𝐛1 = 𝐲 − 𝛽0𝟏𝑛 − Λ− 1
2
(
𝑇0 + 𝑇1

)
. This full

conditional distribution has a nonstandard form, so a Metropolis-Hastings step or sampling importance resampling

(SIR) method can be used (see Appendix C for details).

∙ 𝑇0 ||𝐲,𝐗,𝐙, 𝐭1,𝝀 :

𝑓
(
𝑇0 ||𝐲,𝐗,𝐙, 𝐭1,𝝀; 𝜂𝑡 ) ∝ 𝑓

(
𝐘 ||𝐗, 𝐭0, 𝐭1,𝝀; 𝜂𝑡 ) 𝑓 (

𝑇0; 𝜂𝑡
)

∝ exp
{
− 1
2𝜎2

(
𝐛2 − Λ− 1

2 𝑇0
)′ (

𝐛2 − Λ− 1
2 𝑇0

)
− 1

2𝛾2
𝑇 ′
0𝐶

−1
𝜃 𝑇0

}
∝ exp

{
−1
2

[
𝑇 ′
0

(
1
𝜎2

Λ−1 + 1
𝛾2
𝐶−1
𝜃

)
𝑇0 − 2 1

𝜎2
𝑇 ′
0Λ

− 1
2 𝐛2

]}
∝ exp

{
−1
2

(
𝑇0 −

1
𝜎2
𝐵−1
2 Λ− 1

2 𝐛2
)′
𝐵2

(
𝑇0 −

1
𝜎2
𝐵−1
2 Λ− 1

2 𝐛2
)}

,
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and so 𝑇0 ||𝐲,𝐗,𝐙, 𝐭1,𝝀 ∼ 𝑁𝑛

(
1
𝜎2
𝐵−1
2 Λ− 1

2 𝐛2, 𝐵−1
2

)
where 𝐛2 = 𝐲−𝛽0𝟏𝑛−𝐗𝜷𝑥−Λ− 1

2 𝑇1 and 𝐵2=
1
𝜎2
Λ−1 + 1

𝛾2
𝐶−1
𝜃 .

∙ 𝑇1 ||𝐲,𝐗,𝐙, 𝐭0,𝝀 :

𝑓
(
𝑇1 ||𝐲,𝐗,𝐙, 𝐭0,𝝀; 𝜂𝑡 ) ∝ 𝑓

(
𝐘 ||𝐗, 𝐭0, 𝐭1,𝝀; 𝜂𝑡 )𝑓 (

𝑇1; 𝜂𝑡
)

∝ exp
{
− 1
2𝜎2

(
𝐛3 − Λ− 1

2 𝑇1
)′ (

𝐛3 − Λ− 1
2 𝑇1

)
− 1

2𝛼2
𝑇 ′
1𝐶

−1
𝜃 𝑇1

}
𝐼{ℜ𝑛

≥0
} (
𝑇1
)

∝ exp
{
−1
2

[
𝑇 ′
1

( 1
𝜎2

Λ−1 + 1
𝛼2
𝐶−1
𝜃

)
𝑇1 − 2 1

𝜎2
𝑇 ′
1Λ

− 1
2 𝐛3

]}
𝐼{ℜ𝑛

≥0
} (
𝑇1
)

∝ exp
{
−1
2

(
𝑇1 −

1
𝜎2
𝐵−1
3 Λ− 1

2 𝐛3
)′
𝐵3

(
𝑇1 −

1
𝜎2
𝐵−1
3 Λ− 1

2 𝐛3
)}

𝐼{ℜ𝑛
≥0

} (
𝑇1
)
,

where 𝐛3 = 𝐲 − 𝛽0𝟏𝑛 − 𝐗𝜷𝑥 − Λ− 1
2 𝑇0, 𝐵3 = 1

𝜎2
Λ−1 + 1

𝛼2
𝐶−1
𝜃 and 𝐼{⋅} (⋅) denotes the indicator function. Thus

𝑇1 ||𝐲,𝐗,𝐙, 𝐭0,𝝀 ∼ 𝑇𝑁𝑛

(
𝟎𝑛;

1
𝜎2
𝐵−1
3 Λ− 1

2 𝐛3, 𝐵−1
3

)
.

∙ 𝝍 ||𝐲,𝐗,𝐙, 𝐭0, 𝐭1 :

If 𝝍−𝑖 denotes the vector 𝝍 without 𝜓𝑖, then

𝑓
(
𝜓𝑖 ||𝐲,𝐗,𝐙, 𝐭0, 𝐭1,𝝍−𝑖; 𝜂𝑡

)
∝ 𝑓

(
𝐘 ||𝐗, 𝐭0, 𝐭1,𝝍 ; 𝜂𝑡 ) 𝑓 (

𝜓𝑖 ||𝝍−𝑖 ; 𝜂𝑡
)
, (15)

where the first term i.e., the likelihood contribution, is proportional to the product of normal probability density

function truncated below at the point zero as

exp
{
− 1
2𝜎2

(
𝐛4 − Λ− 1

2 𝑇
)′ (

𝐛4 − Λ− 1
2 𝑇

)}∏
𝑖
𝐼{ℜ+}

(
𝜓𝑖
)
, (16)

𝑇 = 𝑇0 + 𝑇1, 𝐛4 = 𝐲 − 𝛽0𝟏𝑛 − 𝐗𝜷𝑥, Λ = 𝑑𝑖𝑎𝑔 (𝑒𝜓1 ,… , 𝑒𝜓𝑛) ,

and the second term is

𝜓𝑖 ||𝝍−𝑖; 𝜂𝑡 ∼ 𝑁
(
−𝜈
2
+ 𝑐𝜃𝑖.𝐶

−1
𝜃−𝑖

[
𝝍−𝑖 −

𝜈
2
𝟏𝑛−1

]
, 𝜈 − 𝑐𝜃𝑖.𝐶

−1
𝜃−𝑖
𝑐𝜃.𝑖

)
, (17)

where 𝑐𝜃𝑖. denotes the 𝑖𝑡ℎ row of 𝐶𝜃 after omitting the 𝑖𝑡ℎ component and 𝐶𝜃−𝑖 shows 𝐶𝜃 after omitting 𝑐𝜃𝑖. and 𝑐𝜃.𝑖

(i.e., the 𝑖𝑡ℎ row and the 𝑖𝑡ℎ column of 𝐶𝜃). Obtaining a closed form for the full conditional (15) is not possible as it
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does not define a standard probability distribution. Details of the MCMC algorithm are presented in the Appendix

D.

We also provide the standard errors of the ML estimates. The standard errors of the ML estimates are obtained

by inverting the Fisher information matrix, i.e.,

𝐶𝑜𝑣 (𝜂̂) ≈

[
1
𝐿

𝐿∑
𝑙=1

𝑆𝑙 (𝜂̂)𝑆′
𝑙 (𝜂̂)

]−1

, (18)

where 𝑆𝑙 (𝜂̂) = 𝜕
𝜕𝜂
𝓁
(
𝜂; 𝐲,𝐙,𝐗(𝑙), 𝐭(𝑙)0 , 𝐭

(𝑙)
1 ,𝝀

(𝑙)
)||||𝜂=𝜂̂ . Then by taking the square root of the diagonal elements of

𝐶𝑜𝑣 (𝜂̂), the standard errors of the MLEs are obtained.

4 PREDICTION

The prediction of a generic unobserved location, e.g., 𝑠0, is of primary interest in the context of spatial applications.

A suitable prediction of the unobserved location can be made using the plug-in approach. In what follows, we

consider the prediction of response variable at locations 𝑠01 ,… , 𝑠0 , say 𝐘0 =
(
𝑌
(
𝑠01

)
,… , 𝑌

(
𝑠0

))′, which

requires the joint distribution of
(
𝐖′,𝐖′

0

)′ where 𝐖0 (and also 𝑇10 , 𝝍0 and 𝐗0 that are appeared below) can be

defined as in 𝐘0. Following (3), we can write
(
𝐖′,𝐖′

0

)′ 𝑑= [(
𝑇 ′
1 , 𝑇

′
10

)′|||| 𝑇0 > 𝟎𝑛
]

where

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑇0⎡⎢⎢⎢⎢⎣
𝑇1

𝑇10

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∼ 𝑁2𝑛+

⎛⎜⎜⎜⎜⎝
𝟎2𝑛+ ,

⎡⎢⎢⎢⎢⎣
𝐶
𝜃 Δ†′

Δ† Σ†

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
, Δ† = 𝛼

⎛⎜⎜⎜⎜⎝
𝐶
𝜃

𝐶
𝜃

⎞⎟⎟⎟⎟⎠
,

with 𝐶
𝜃 =

[
𝐶𝜃

(‖‖‖𝑠𝑖 − 𝑠𝑗‖‖‖)]𝑛×𝑛, 𝐶
𝜃 =

[
𝐶𝜃

(‖‖‖𝑠0𝑖 − 𝑠𝑗‖‖‖)]×𝑛
, Σ† =

[
𝛾2 + 𝛼2

]
𝐶†
𝜃 and

𝐶†
𝜃 =

⎛⎜⎜⎜⎜⎝
𝐶
𝜃 𝐶

𝜃

𝐶
𝜃 𝐶

𝜃

⎞⎟⎟⎟⎟⎠
, 𝐶

𝜃 =
[
𝐶𝜃

(‖‖‖𝑠0𝑖 − 𝑠0𝑗‖‖‖)]× .



14 Tadayon and Torabi

Thus,
(
𝐖′,𝐖′

0

)′ ∼ 𝑆𝑈𝑁𝑛+ ,𝑛
(
𝟎𝑛+ , 𝟎𝑛,Σ†, 𝐶

𝜃 ,Δ†) and then the joint distribution of
(
𝐘′,𝐘′

0

)′ given(
𝐗,𝐗0,𝝍 ,𝝍0

)
is

𝑆𝑈𝑁𝑛+ ,2𝑛
(
𝝁𝑦𝑦0 , 𝟎2𝑛,Λ

†−
1
2Σ†Λ†−

1
2 + 𝜎2𝐼𝑛+ , 𝐶

𝜃 ⊕ 𝐼𝑛,
[
Λ†−

1
2Δ†, 𝟎(𝑛+𝑝)×(𝑛+𝑝)

])
, (19)

where 𝝁𝑦𝑦0 = 𝛽0𝟏𝑛+ + 𝐗𝜷𝑥, 𝐗 =
(
𝐗′,𝐗′

0

)′ and Λ† = Λ⊕ exp
{
𝝍0

}
. The predictive distribution is

𝑃
(
𝐘0 |𝐲,𝐙)

= ∫ 𝑃
(
𝐘0

||𝐲,𝐗,𝐗0,𝝍 ,𝝍0,𝐙
)
𝑃
(
𝝍0

||𝐲,𝐗,𝐗0,𝝍 ,𝐙
)

𝑃
(
𝝍 ||𝐲,𝐗,𝐗0,𝐙

)
𝑃
(
𝐗0 |𝐲,𝐗,𝐙)

𝑃 (𝐗 |𝐲,𝐙 ) 𝑑𝐗𝑑𝐗0𝑑𝝍𝑑𝝍0, (20)

which is approximated by Monte Carlo methods. In what follows, we determine the five terms as required in (20):

i) 𝐘0
||𝐲,𝐗,𝐗0,𝝍 ,𝝍0,𝐙 :

𝐘0
||𝐲,𝐗,𝐗0,𝝍 ,𝝍0,𝐙 ∼ 𝑆𝑈𝑁 ,2𝑛

(
𝝁𝐲0|. , 𝛼𝐶

𝜃 Λ− 1
2Ω

(
𝐲 − 𝐗𝜷𝑥

)
,Σ𝐲0|. ,Γ𝐲0|. ,Δ𝐲0|.

)
,

where

𝝁𝐲0|. = 𝛽0𝟏𝑛 + 𝐗0𝜷𝑥 +
[
𝛾2 + 𝛼2

]
Λ†−

1
2 𝐶

𝜃 Λ− 1
2Ω−1,

Σ𝐲0|. = [
𝛾2 + 𝛼2

]
Λ†−

1
2 𝐶

𝜃 Λ†−
1
2 Ω−1 + 𝜎2𝐼 −

[
𝛾2 + 𝛼2

]2Λ†−
1
2 𝐶

𝜃 Λ− 1
2Ω−1Λ− 1

2𝐶
𝜃 Λ†−

1
2 ,

Γ𝐲0|. = 𝐶
𝜃 − 𝛼2𝐶

𝜃 Λ− 1
2Ω−1Λ− 1

2𝐶
𝜃 ,

Δ𝐲0|. = Λ†−
1
2 𝐶

𝜃 −
[
𝛾2 + 𝛼2

]
Λ†−

1
2 𝐶

𝜃 Λ− 1
2Ω−1Λ− 1

2𝐶
𝜃 .

ii) 𝝍0
||𝐲,𝐗,𝐗0,𝝍 ,𝐙 :

𝑃
(
𝝍0

||𝐲,𝐗,𝐗0,𝝍 ,𝐙
)
= 𝑃

(
𝝍0 |𝝍 )

= 𝑁
(
−𝜈
2
𝟏 + 𝐶

𝜃 𝐶−1

𝜃

[
𝝍 + 𝜈

2
𝟏𝑛
]
, 𝜈

[
𝐶
𝜃 − 𝐶

𝜃 𝐶−1

𝜃 𝐶
𝜃

])
.

iii) The third term is 𝑃
(
𝝍 ||𝐲,𝐗,𝐗0,𝐙

)
= 𝑃 (𝝍 |𝐲 ) and so, as mentioned before, it can be sampled using MCMC

algorithms.
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iv) 𝐗0 |𝐲,𝐗,𝐙 :

𝑃
(
𝐗0 |𝐲,𝐗,𝐙)

∝ 𝑃
(
𝐗0,𝐗 |𝐲,𝐙)

∝ 𝑃
(
𝐘 ||𝐗0,𝐗,𝐙

)
𝑃
(
𝐗0,𝐗 |𝐙)

∝ 𝑃
(
𝐘 ||𝐗0,𝐗

)
𝑃
(
𝐗0,𝐗 |𝐙)

∝
[
∫ 𝑃

(
𝐘 ||𝐗0,𝐗,𝝍

)
𝑃 (𝝍) 𝑑𝝍

]
𝑃
(
𝐗0,𝐗 |𝐙)

,

where 𝐘 ||𝐗0,𝐗,𝝍 has a SUN distribution as in (7) and 𝐗0,𝐗 |𝐙 has a normal distribution as in (13). So, a

Metropolis-Hastings step will be used to obtain 𝑃
(
𝐗0 |𝐲,𝐗,𝐙)

.

v) The last term in (20) can be defined as

𝑃 (𝐗 |𝐲,𝐙 ) ∝ 𝑃 (𝐘 |𝐗,𝐙 )𝑃 (𝐗 |𝐙 )

∝ 𝑃 (𝐘 |𝐗 )𝑃 (𝐗 |𝐙 ) , (21)

where 𝑃 (𝐗 |𝐙 ) is as in (13). Unfortunately, the distribution 𝑃 (𝐘 |𝐗 ) does not have a closed form. Therefore,

(21) does not have a closed form and can be sampled by MCMC algorithms or SIR method. Now, sampling

from the predictive distribution (20) is straightforward; for each posterior drawing of (21), we generate a draw-

ing from 𝐗0 |𝐲,𝐗,𝐙 then 𝝍 ||𝐲,𝐗,𝐗0,𝐙 and 𝝍0
||𝐲,𝐗,𝐗0,𝝍 ,𝐙 step by step. Finally, using sampling from density

𝐘0
||𝐲,𝐗,𝐗0,𝝍 ,𝝍0,𝐙 , we can obtain a realization from the predictive distribution. So, we generate 𝐿 draws (after

a burn-in period) from 𝐘0 |⋅ and then the spatial predictor and prediction variance are given by

𝐘0 = 𝐿−1
∑𝐿

𝑙=1
𝐲0𝑙 ,

̂
𝑉 𝑎𝑟

(
𝐘0

)
= 𝐿−1

∑𝐿

𝑙=1

(
𝐲0𝑙 − 𝐘0

)2
,

respectively.
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5 SIMULATION STUDY

We now evaluate performance of the proposed approach by conducting some simulation studies. In particular, our

goals are: (i) to examine the effect of sample size (the number of spatial locations) on model performance, (ii) to

evaluate how the inference (or, more precisely, prediction) behaves with changing 𝜎2𝑢 , (iii) to assess the influence of

misspecified ME by using different distribution of ME for the model fitting, and (iv) to compare the performance

of our model with its competitors. All computations were performed using freely available R software. To achieve

our first goal, we did three simulations each with R = 1000 generated data sets which contain 𝑛 = 225, 325 and

425 observations, respectively, where the sites uniformly distributed over the region [0, 100] × [0, 100]. Moreover,

in these simulations, subsets of size 200, 300 and 400, respectively, were randomly selected and used for model

training, and the remaining 25 samples (in each scenario) were used for prediction. The data were simulated from

the model in (10) with 𝑘 = 1 and the following are presumed parameters: 𝛽0 = 2, 𝛽1 = 3.5, 𝜎2 = 0.7, 𝛾 = 1.75,

𝛼 = −2.5, 𝜈 = 0.85, 𝜇𝑥 = 0, 𝜎2𝑥 = 1, 𝜎2𝑢 = 0.6 and 𝜃 = 0.03. Thus, for instance, for a small and a large

distance, say ‖‖ℎ1‖‖ = 3 and ‖‖ℎ2‖‖ = 120, respectively, we have 𝐶
(‖‖ℎ1‖‖) ≈ 0.91 and 𝐶

(‖‖ℎ2‖‖) ≈ 0.02 which

show the approximations of the maximum and the minimum dependencies based on the presented exponential

correlation function. Thus, we considered a simple linear regression as 𝛽0 + 𝛽1𝑋
(𝑟)
𝑖 , where 𝑋(𝑟)

𝑖 ∼ 𝑁 (0, 1) is not

directly observed but we observe instead 𝑍 (𝑟)
𝑖 = 𝑋(𝑟)

𝑖 + 𝑈 (𝑟)
𝑖 , where 𝑈 (𝑟)

𝑖 ∼ 𝑁
(
0, 𝜎2𝑢 = 0.6

)
, 𝑟 = 1,… ,R . Our

observed data set in each simulation run are
{(
𝑌 (𝑟)
𝑖 , 𝑍 (𝑟)

𝑖

)
; 𝑖 = 1,… , 𝑛; 𝑟 = 1,… ,R

}
. We use the bias criterion as

𝐵𝑖𝑎𝑠 (𝜂̂) = R −1
R∑
𝑟=1

(
𝜂̂(𝑟) − 𝜂

)
for a parameter 𝜂 to assess performance of the proposed methodology. In addition, the

accuracy of the estimators is quantified by model-based variance of the estimators through the equation (18) where

𝐿 = 100 and also comparing with the empirical variance of each estimation as 𝑀𝑆𝐸 (𝜂̂) = R −1
R∑
𝑟=1

(
𝜂̂(𝑟) − 𝜂̄

)2
where 𝜂̄ = R −1

R∑
𝑟=1
𝜂̂(𝑟). We also compare performance of the proposed approach with the naive approach which

ignores the measurement error in covariate (𝜎2𝑢 = 0) and with the stationary Gaussian ME model. Table 1, which

summarizes the results, confirms better performance of the proposed model compared to the naive approach and

the Gaussian ME model. This table also reports the precision of model prediction by taking the average of the

https://www.r-project.org/
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square root of the mean squared prediction errors (ARPE), where the mean squared prediction error (MSPE) of

the predicted response is 𝑀𝑆𝑃𝐸𝑦𝑖 = R −1
R∑
𝑟=1

(
𝑦̂(𝑟)𝑖 − 𝑦𝑖

)2
for 𝑖 = 1,… , 25, and also the variance of square root

of the mean squared prediction errors (VRPE). As might be expected, the most discernible differences between

the model-based and empirical variances occur for the naive approach and also we can see larger variances based

on the naive approach. Moreover, in this table, the CPU times, in hours, were recorded for a single run of the

algorithm on an iMac with Intel Core i7 2.93GHz processor and 8GB RAM. It is obvious that the CPU times for

the proposed model intensively increase as the sample size increases (see Conclusion section for more discussion

on this). However, in the era of high-performance computing, the accuracy of the result is more important than the

computing time.

To explore the effect of 𝜎2𝑢 on prediction (as one of the main goals of spatial studies), we again carried out the

prediction based on our model but this time we fixed 𝑛 = 325 and instead considered different values for 𝜎2𝑢 as

𝜎2𝑢 = 0.4 and 0.9 (since it is expected that 𝜎2𝑢 < 𝜎
2
𝑥 = 1). Results are presented in Table 2 where the values based on

𝜎2𝑢 = 0.6 are taken from Table 1. In a nutshell, although the biases behave differently for some model parameters

for different values of 𝜎2𝑢 , but the corresponding model-based variances are very similar.

[Tables 1 and 2 about here]

To examine the sensitivity of our model when we have misspecification in the distribution of the covariate ME,

we assumed two different distributions for 𝑈𝑖 in the simulation (based on 𝑛 = 225): 𝑡-distribution with 2 degrees

of freedom i.e., 𝑡 (2), and the skew normal distribution 𝑆𝑁 (0, 1; 2) with zero mean, variance one, and skewness

parameter 2 (with density 2𝜙 (𝑥) Φ (2𝑥), where 𝜙 (⋅) and Φ (⋅) respectively denote the standard normal density and

cumulative function); noting that we generated the data sets from the above scenarios but used normal distribution

for𝑈𝑖 in model fitting. Table 3 shows that under the misspecified ME distribution, the proposed model still provides

relatively satisfactory estimators, even for a not so large sample size, however, with larger biases and variances.

The last goal of this section is to compare our model performance with its competitors such as Gaussian, skew

Gaussian and the GLG models through Akaike information criterion (AIC) which is a popular criterion for the

model assessment. The results are summarized in Table 4. We also provide the ARPE for each model . Based on
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the ARPE and AIC, the unified skew GLG model has the best performance which has the lowest ARPE and AIC

among the models.

[Tables 3 and 4 about here]

Finally, our interest is to evaluate the discrepancy between the predictions of new locations and the actual values

of those locations. To that end, we considered another simulation, based on 𝑛 = 400, where a subset of size

300 uniformly selected from the region [0, 100] × [0, 100] and the remaining 100 locations will be considered

on a regular 10 × 10 lattice with ten units between nearest neighbours as {5, 15, 25, 35, 45, 55, 65, 75, 85, 95} ×

{5, 15, 25, 35, 45, 55, 65, 75, 85, 95}, to compare the discrepancy between the true spatial surface and the predicted

spatial surface. Panel (a) of Figure 1 shows that our model prediction works very well, however, to explore more

precisely, we provided a variogram for the difference between the true and predicted spatial surface (panel (b)). As

we expected, the variogram is spatially unstructured and close to zero.

[Figure 1 about here]

6 PM DATA APPLICATION

Environmental air pollution encompasses various particulate matters. The increased ambient particulate matter

(PM) from industrialization and urbanization is highly associated with morbidity and mortality worldwide, pre-

senting one of the most severe environmental pollution problems. PMs include the harmful suspended mixture of

both solid and liquid particles. They are often separated into three classifications: “coarse", “fine" and “ultrafine"

particles. Coarse particles have a diameter of between 10 micrometer (𝜇𝑚) and 2.5𝜇𝑚 and settle relatively quickly

whereas fine (0.1 to 2.5𝜇𝑚 in diameter) and ultrafine (< 0.1𝜇𝑚 in diameter) particles remain in suspension for

longer period of time. To put things into perspective, human hair has a diameter of 50 − 70𝜇𝑚 and a grain of sand

has a diameter of 90𝜇𝑚. Since an excess of PM10 concentration in any area causes serious environmental pollu-

tion, the detection of areas with high PM10 concentration is an important problem and this is a greatest concern of
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recent studies that link PM10 exposure to the premature death of people who already have heart and lung disease,

especially the elderly (Titi, Dweirj, & Tarawneh 2015).

This section consists of an illustrative application of our methodology to investigate the spatial variations of

PM10 concentration in Iran. The study area contains the 72 most populous cities in Iran with the annual maxi-

mum daily PM10 concentration. The data set collected from a monitoring network composed of 72 stations in 2011

and can be downloaded from the Iran Meteorological Organization data centre website. The distance of the near-

est and the farthest data point are 14.1𝑘𝑚 and 1624.3𝑘𝑚, respectively. The data contains the annual maximum

PM10 concentration (in 𝜇𝑔∕𝑚3), which is used as the response variable in our study, spatial coordinates in terms

of latitude and longitude, and mean wind speed (WS, in 𝑘𝑚∕ℎ) as a covariate in analyzing PM10 concentration

(see, e.g., Cameletti, Ignaccolo, & Bande 2011). The mean wind speed has been obtained by averaging the cor-

responding values while the PM10 concentrations was in the highest level at each location. Moreover, a review of

the literature confirms that measuring wind speed is associated with ME. Namely, a professional and well cali-

brated rotation anemometers such as cup anemometers and rotation vane anemometers which are apparently the

most usual instruments for measuring the wind speed, has at least a ME around 1% (Danish Wind Turbine Man-

ufacturers Association). Knowledge of the ME variance was empirically determined for wind speed by the Iran

Meteorological Organization data centre as 𝜎2𝑢 ≈ 0.7. Figure 2 shows a schematic description of the region and

the location of monitoring stations as well as the histogram of the maximum PM10 concentration. As a result of

simple exploratory data analysis, the histogram induces a non-Gaussian feature but to explore more precisely this

feature, further investigation is needed. Therefore, a simple mean function (𝛽0+𝛽1WS) was fitted and several goals

were pursued: the normal Q-Q plots of the response and residuals, the kernel estimate of residuals density, and the

Shapiro-Wilk test for normality assumption of the response and residuals. The 𝑝-values obtained from the Shapiro-

Wilk normality tests for the response and residuals were 0.0091 and 3.66 × 10−6, respectively, which indicate the

non-normality of response and residuals. Figure 3 provides the Q-Q plots of response and residuals, and histogram

of residuals which all clearly show deviation from the normality assumption.

[Figures 2, 3 and 4 about here]

http://irimo.ir/eng/
http://ele.aut.ac.ir/~wind/en/core.htm
http://ele.aut.ac.ir/~wind/en/core.htm
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We also use the H-scatter plot as a tool for outlier detection and spatial continuity. In particular, an H-scatter plot

shows all possible pairs of data values whose locations are separated by a certain distance ℎ in a particular direction.

When the spatial correlations are strong with closer distance of the sampling sites or the data is highly homogenous,

the monitoring sites tend to assemble to a straight line with the angle of 45◦ (which shows the stationarity of the

process as well). If the spatial correlation between two samples decreases or the relationship between two variables

weakens, the shape of the cloud of points will spread out displaying a characteristic butterfly-wing shape. The H-

scatter plot of the maximum PM10 concentration is shown in Figure 4 (left panel). The points are located far from the

cross-line for small distance ‖ℎ‖ with a strong variability which can be treated as outliers in the data set. Moreover,

structural geostatistical description of the response variability was revealed by the omnidirectional experimental

semi-variogram map as shown in Figure 4 (right panel). In this map, a class of distance and a direction, which can

be converted into a grid cell representing the vertex of the vector whose origin is at the center of the grid and whose

norm equals the distance between the two points and direction equals the direction along which the two points, are

aligned. This indicates that we need to analyze the spatial continuity of the maximum PM10 in all the directions of

space. The isotropic feature is clearly identified by this figure as well.

We also need the value of 𝜎2 which is often obtained from other sources. However, since we do not have access to

this information, our practical advice is to analyze the data based on some different values of 𝜎2 to evaluate different

scenarios by AIC (which is the most popular criterion for model assessment in the literature) and come up with the

final/good model which fits well for the dataset. Table 5 indicates that the proposed model presents a better fit based

on 𝜎2 = 0.65 than the other values. Table 6 displays the model parameters estimate and corresponding standard

error for the proposed and naive (ignoring measurement error) approaches, and also based on the ME models GLG,

skew Gaussian, and Gaussian. As might be expected from the simulation, the proposed model presents a better fit

for the data compared to the naive model based on the AIC model comparison.

[Table 5 and 6 about here]

Finally, the contour map corresponding to the predictive mean under the unified skew GLG case is shown in

Figure 5.
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7 CONCLUSION

In this paper, we have developed a modeling approach to account for the covariates measurement error in non-

Gaussian spatial data to also capture both skewness and heavy tails in the response data. Moreover, we equated

heavy tails with outliers/large values and explained that the large values may be due to the large variance. Although,

this could be a property of a non-stationary Gaussian process, and not necessarily indicates non-Gaussian distri-

bution, the exploratory data analysis of the maximum PM10 concentration implied that the response was stationary

(since the monitoring sites tend to assemble to a straight line with the angle of 45◦ in the H-scatterplot). An

expectation-maximization algorithm was developed to compute the maximum likelihood estimate of model param-

eters. A simulation study was conducted to show outperformance of the proposed model compared to the naive

model which ignores the measurement error in covariates. A real data application regarding the maximum PM10

concentration with wind speed as a covariate measured with error was also analyzed.

It is clear that without some kind of information regarding the magnitude of measurement error, measurement

error models will not be identifiable. Practically speaking, there are two possibilities: (i) assuming that measure-

ment error variance is known or can be estimated using other sources (such as a validation data set, see Carroll,

Ruppert, Stefanski, and Crainiceanu 2006); (ii) assumptions are made regarding measurement error process. How-

ever, Huque et al. (2016) presented an approach which contrasts with the assumption of existence of validation

data. Our paper has used the first approach. One of the additional assumptions required by our approach is that

the correlation structure 𝐖 (⋅) and 𝝍 (⋅) are equal but one can choose different spatial correlation structures and

address the identifiability issue. In addition, the focus of this work was structural measurement error. One can also

extend the proposed model in this study to the functional measurement error. Moreover, in the last decade, there

has been a growing interest in terms of modeling spatial big data. A core difficulty of analyzing spatial big data is

in inverting the 𝑛 × 𝑛 covariance matrix (see Heaton et al. 2017 as an introductory overview of the spatial big 𝑛

problems and several proposed methods). Another natural extension of this work is to scale the proposed model to
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big data. Another direction of this work is to extend the proposed spatial model to the spatio-temporal model. We

have planned to study these approaches in our future studies.

SUPPLEMENTARY MATERIALS

The supplementary materials contain R codes and corresponding "readme" files for the simulation study and real

data application conducted in this paper.
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APPENDIX

A: Log-Likelihood Function

We provide details of equation (11). To that end, we can write

𝓁 (𝜂) = log 𝑓𝐘,𝐙|||𝐗,𝑇0,𝑇1,𝝀 (𝐲,𝐙;𝜷) + log 𝑓𝐗
(
𝐗;𝝁𝑥, 𝜎2𝑥

)
+ log 𝑓𝑇0

(
𝐭0; 𝛾2, 𝜃

)
+ log 𝑓𝑇1

(
𝐭1; 𝛼2, 𝜃

)
+ log 𝑓𝝀 (𝝀; 𝜈, 𝜃)

= −1
2
‖‖𝐲 − 𝛽0𝟏𝑛 − 𝐗𝜷𝑥 −𝐖𝜆

‖‖2 − 𝑛
2
log 𝜎2𝑢 −

1
2𝜎2𝑢

‖𝐙 − 𝐗‖2
−𝑛
2
log 𝜎2𝑥 −

1
2𝜎2𝑥

‖‖𝐗 − 𝝁𝑥‖‖2
−𝑛
2
log 𝛾2 − 1

2
log ||𝐶𝜃|| − 1

2𝛾2
𝐭′0𝐶

−1
𝜃 𝐭0
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−𝑛
2
log 𝛼2 − 1

2𝛼2
𝐭′1𝐶

−1
𝜃 𝐭1 − log∫

ℜ𝑛
+

exp
{
−1
2
𝐭1′𝐶−1

𝜃 𝐭1
}
𝑑𝐭1

−𝑛
2
log 𝜈 − 1

2
log ||𝐶𝜃|| − 1

2𝜈

(
𝝍 + 𝜈

2
𝟏𝑛
)′
𝐶−1
𝜃

(
𝝍 + 𝜈

2
𝟏𝑛
)
,

where ‖⋅‖ denotes the square norm, |⋅| denotes the determinant and 𝐖𝜆 = Λ− 1
2
(
𝑇0 + 𝑇1

)
. Further, equation (12)

can be written as

𝑄
(
𝜂 ||𝜂𝑡 )= 𝐸

{
𝓁 (𝜂) ||𝐲,𝐙, 𝜂𝑡}

= −1
2
[
𝐲′𝐲 − 2𝛽0𝐲′𝟏𝑛 − 2𝐲′𝐸1 (𝐗 |𝐙 ) 𝜷𝑥 − 2𝐲′𝐸2

(
𝐖𝜆 |𝐲)

+𝛽20𝟏
′
𝑛𝟏𝑛 + 2𝛽0𝟏′𝑛𝐸1 (𝐗 |𝐙 ) 𝜷𝑥 + 2𝛽0𝟏′𝑛𝐸2

(
𝐖𝜆 |𝐲)

+𝜷′
𝑥𝐸3

(
𝐗′𝐗 |𝐙)

𝜷𝑥 + 2
[
𝐸2

(
𝐖𝜆 |𝐲)]′ 𝐸1 (𝐗 |𝐙 ) 𝜷𝑥 + 𝐸4

(
𝐖′

𝜆𝐖𝜆 |𝐲)]
−𝑛
2
log 𝜎2𝑢 −

1
2𝜎2𝑢

{
𝐙′𝐙 − 2𝐙′𝐗 + 𝐗′𝐗

}
− 𝑛

2
log 𝜎2𝑥 −

1
2𝜎2𝑥

{
𝐸3

(
𝐗′𝐗 |𝐙)

− 2
[
𝐸1 (𝐗 |𝐙 )

]′ 𝝁𝑥 + 𝝁′
𝑥𝝁𝑥

}
− 𝑛

2
log 𝛾2 − 1

2
log ||𝐶𝜃|| − 1

2𝛾2
𝑡𝑟
[
𝐶−1
𝜃 𝐸5

(
𝑇0𝑇

′
0 |𝐲)]

− 𝑛
2
log 𝛼2 − 1

2𝛼2
𝑡𝑟
{
𝐶−1
𝜃 𝐸6

(
𝑇1𝑇

′
1 |𝐲)} − log∫

ℜ𝑛
+

exp
{
−1
2
𝐭′1𝐶

−1
𝜃 𝐭1

}
𝑑𝐭1

− 𝑛
2
log 𝜈 − 1

2
log ||𝐶𝜃|| − 1

2𝜈

[
𝑡𝑟
{
𝐶−1
𝜃 𝐸7

(
𝝍𝝍 ′ |𝐲)}+ 𝜈𝟏′𝑛𝐶−1

𝜃 𝐸8 (𝝍 |𝐲 ) + 𝜈2

4
𝟏′𝑛𝐶

−1
𝜃 𝟏𝑛

]
, (22)

in which the last three lines of (22) are derived from equation (13), the role of the expected value of a quadratic

form, and also

𝐸3
(
𝐗′𝐗 |𝐙)

= 𝜎2𝑥 [1 − 𝑎] 𝐼𝑘 + 𝐸1
(
𝐗′ |𝐙)

𝐸1 (𝐗 |𝐙 ) .

B: Updates of the Parameters in the MCEM Algorithm

To update the MCEM estimates at the stage 𝑡 + 1 of the algorithm, we have the following equations:

𝜷 𝑡+1𝑥 =
[
𝔼𝑡+13

]−1 [𝔼𝑡+11

]′ (𝐲 − 𝛽𝑡0𝟏𝑛 − 𝔼𝑡+12

)
,



24 Tadayon and Torabi

𝛽𝑡+10 = 1
𝑛
𝟏′𝑛

(
𝐲 − 𝔼𝑡+11 𝜷 𝑡𝑥 − 𝔼𝑡+12

)
,

𝜎2𝑡+1𝑥 = 1
𝑛

[
𝔼𝑡+13 − 2

[
𝔼𝑡+11

]′ 𝝁𝑡𝑥 + 𝝁𝑡𝑥′𝝁𝑡𝑥] ,
𝛾2𝑡+1 = 1

𝑛
𝑡𝑟
(
𝐶−1
𝜃𝑡 𝔼

𝑡+1
5

)
,

𝛼2𝑡+1 = 1
𝑛
𝑡𝑟
(
𝐶−1
𝜃𝑡 𝔼

𝑡+1
6

)
,

𝜈𝑡+1 = 2
[
𝟏′𝑛𝐶

−1
𝜃𝑡 𝟏𝑛

]−1 [−𝑛 +√
𝑛2 + 𝑡𝑟

[
𝐶−1
𝜃𝑡 𝔼

𝑡+1
7

]
𝟏′𝑛𝐶

−1
𝜃𝑡 𝟏𝑛

]
,

𝝁𝑡+1
′

𝑥 = 𝜎2𝑡𝑥

(
1 −

𝜎2𝑡𝑥
𝜎2𝑡𝑥 + 𝜎2𝑢

)[
𝐲′ − 𝛽𝑡0𝟏

′
𝑛 −

(
1 −

𝜎2𝑡𝑥
𝜎2𝑡𝑥 + 𝜎2𝑢

)[
𝔼𝑡+12

]′] 𝟏′𝑘𝜷
𝑡
𝑥 + 𝔼𝑡+11 𝟏𝑘,

𝜃𝑡+1 = argmin
𝜃

{
log ||𝐶𝜃𝑡 || + 1

2𝛾2𝑡
𝑡𝑟
[
𝐶−1
𝜃𝑡 𝔼

𝑡+1
5

]
+ 1
2𝛼2𝑡

𝑡𝑟
[
𝐶−1
𝜃𝑡 𝔼

𝑡+1
6

]
+ log∫

ℜ𝑛
+

exp
{
−1
2
𝐭′1𝐶

−1
𝜃𝑡 𝐭1

}
𝑑𝐭1

+ 1
2𝜈𝑡

𝑡𝑟
[
𝐶−1
𝜃𝑡 𝔼

𝑡+1
7

]
+ 1

2
𝟏′𝑛𝐶

−1
𝜃𝑡 𝔼

𝑡+1
8 + 𝜈𝑡

8
𝟏′𝑛𝐶

−1
𝜃𝑡 𝟏𝑛

}
.

C: Sampling from Conditional Distribution 𝐗 ||𝐲,𝐙, 𝐭0, 𝐭1,𝝀
Choosing a Metropolis-Hastings step to draw samples from (14) consists of accepting the produced value 𝐗∗ from

the candidate generator 𝑞 (𝐗∗) at the 𝑘𝑡ℎ iteration with probability 𝑚𝑖𝑛
{
1, 𝑟𝑘

}
where 𝑟𝑘 = 𝑓 (𝐗∗|𝑑𝑎𝑡𝑎 )𝑞(𝐗(𝑘))

𝑓(𝐗(𝑘)|𝑑𝑎𝑡𝑎 )𝑞(𝐗∗)
and

𝑓 (⋅ |𝑑𝑎𝑡𝑎 ) is defined by (14) and the candidate generator 𝑞 can be chosen as a n-variate normal distribution where

its parameters can be simply chosen as the sample mean and sample variance of𝐗(𝑘). Similarly, in the SIR approach,

we may generate (say, 𝐿) approximate samples from (14) as follows:

◦ Draw samples
{
𝐗(𝑖)}𝐿

𝑖=1 from the proposal distribution 𝑞 (𝐗),

◦ Calculate importance weights 𝜔𝑖 = 𝑓
(
𝐗(𝑖) |𝑑𝑎𝑡𝑎) /𝑞 (𝐗(𝑖)),

◦ Normalize the weights as 𝑝𝑖 = 𝜔𝑖
/∑

𝑖 𝜔𝑖,

◦ Resample with replacement from
{
𝐗(𝑖)}𝐿

𝑖=1 with sample probabilities 𝑝𝑖,

where the proposal distribution 𝑞 (𝐗) can be chosen same as the first approach.
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D: Sampling from Conditional Distribution 𝝍 ||𝐲,𝐗,𝐙, 𝐭0, 𝐭1
Since (15) does not have a standard probability distribution, we use the Metropolis-Hastings algorithm to generate

a sample from it. To that end, we approximate (16) by log-normal distribution. If ℑ𝑖 = 𝜆
− 1

2
𝑖 , 𝐭𝑖 = 𝐭0𝑖 + 𝐭1𝑖 and

ℎ𝑖 = 𝜎−1𝐛4𝑖𝑠𝑖𝑔𝑛
(
𝐭𝑖
)

where 𝑠𝑖𝑔𝑛 (⋅) denotes the sign function, then

𝐸
(
ℑ𝑖

)
=

∫ ∞
0 ℑ𝑖 exp

{
− 1

2

[
ℑ𝑖−|𝐭𝑖|−1𝐛4𝑖 𝑠𝑖𝑔𝑛(𝐭𝑖)

𝜎|𝐭𝑖|−1
]2}

𝑑ℑ𝑖

∫ ∞
0 exp

{
− 1

2

[
ℑ𝑖−|𝐭𝑖|−1𝐛4𝑖 𝑠𝑖𝑔𝑛(𝐭𝑖)

𝜎|𝐭𝑖|−1
]2}

𝑑ℑ𝑖

= 𝜎||𝐭𝑖||−1
⎡⎢⎢⎢⎢⎢⎣
∫ ∞
0

ℑ𝑖−|𝐭𝑖|−1𝐛4𝑖 𝑠𝑖𝑔𝑛(𝐭𝑖)
𝜎|𝐭𝑖|−1 exp

{
− 1

2

[
ℑ𝑖−|𝐭𝑖|−1𝐛4𝑖 𝑠𝑖𝑔𝑛(𝐭𝑖)

𝜎|𝐭𝑖|−1
]2}

𝑑ℑ𝑖

∫ ∞
0 exp

{
− 1

2

[
ℑ𝑖−|𝐭𝑖|−1𝐛4𝑖 𝑠𝑖𝑔𝑛(𝐭𝑖)

𝜎|𝐭𝑖|−1
]2}

𝑑ℑ𝑖

+ ℎ𝑖

⎤⎥⎥⎥⎥⎥⎦
= 𝜎||𝐭𝑖||−1 ⎡⎢⎢⎢⎣

∫ ∞
−ℎ𝑖

ℑ∗
𝑖 exp

{
− 1

2
ℑ∗2
𝑖

}
𝑑ℑ∗

𝑖

∫ ∞
−ℎ𝑖

exp
{
− 1

2
ℑ∗2
𝑖

}
𝑑ℑ∗

𝑖

+ ℎ𝑖

⎤⎥⎥⎥⎦
= 𝜎||𝐭𝑖||−1 [𝛿 (ℎ𝑖) + ℎ𝑖] ,

where

ℑ∗
𝑖 =

ℑ𝑖 − ||𝐭𝑖||−1𝐛4𝑖𝑠𝑖𝑔𝑛 (𝐭𝑖)
𝜎||𝐭𝑖||−1 , 𝛿

(
ℎ𝑖
)
=

∫ ∞
−ℎ𝑖

ℑ∗
𝑖 exp

{
− 1

2
ℑ∗2
𝑖

}
𝑑ℑ∗

𝑖

∫ ∞
−ℎ𝑖

exp
{
− 1

2
ℑ∗2
𝑖

}
𝑑ℑ∗

𝑖

.

In a similar way, one can easily see that 𝐸
(
ℑ2
𝑖

)
= 𝜎2𝐭𝑖−2

[
1 + ℎ𝑖𝛿

(
ℎ𝑖
)
+ ℎ2𝑖

]
. On the other hand, we know that if

𝜆𝑖 ∼ 𝐿𝑁
(
𝑚𝑖, 𝑠2𝑖

)
, then

𝐸
(
𝜆
− 1

2
𝑖

)
= 𝑒−

1
2
𝑚𝑖+

1
8
𝑠2𝑖 , 𝐸

(
𝜆−1𝑖

)
= 𝑒−𝑚𝑖+

1
2
𝑠2𝑖 .

Therefore, by solving the system of following linear equations:

𝑒−
1
2
𝑚𝑖+

1
8
𝑠2𝑖 = 𝜎||𝐭𝑖||−1 [𝛿 (ℎ𝑖) + ℎ𝑖]

𝑒−𝑚𝑖+
1
2
𝑠2𝑖 = 𝜎2𝐭𝑖−2

[
1 + ℎ𝑖𝛿

(
ℎ𝑖
)
+ ℎ2𝑖

]
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in terms of 𝑚𝑖 and 𝑠2𝑖 , we obtain, as an approximating distribution of the likelihood contribution to 𝜓𝑖 as

𝑁
(
𝑚𝑖, 𝑠

2
𝑖

)
, 𝑚𝑖 = ln

𝐭2𝑖
[
1 + ℎ𝑖𝛿

(
ℎ𝑖
)
+ ℎ2𝑖

]
𝜎2
[
𝛿
(
ℎ𝑖
)
+ ℎ𝑖

]4 , 𝑠2𝑖 = 4 ln
1 + ℎ𝑖𝛿

(
ℎ𝑖
)
+ ℎ2𝑖[

𝛿
(
ℎ𝑖
)
+ ℎ𝑖

]2 . (23)

A suitable candidate generator can be constructed by combining (17) and (23) as

𝑞
(
𝜓𝑖 |⋅) ∝ exp

{
−1
2
∑𝑛

𝑗=1

(
𝜓𝑗 − 𝑚𝑗

)2
𝑠2𝑗

}
exp

{
−1
2

(
𝜓𝑖 − 𝑚𝑖∗

)2
𝑠2𝑗∗

}

∝ exp

{
−1
2

[
𝜓2
𝑖 − 2𝑚𝑖𝜓𝑖 + 𝑚2

𝑖

𝑠2𝑖
+
𝜓2
𝑖 − 2𝑚𝑖∗𝜓𝑖 + 𝑚2

𝑖∗

𝑠2𝑖∗

]}

∝ exp

{
−1
2

(
𝑠2𝑖 + 𝑠

2
𝑖∗

𝑠2𝑖 𝑠
2
𝑖∗

)[
𝜓2
𝑖 − 2𝜓𝑖

(
𝑠2𝑖𝑚𝑖∗ + 𝑠

2
𝑖∗𝑚𝑖

𝑠2𝑖 + 𝑠
2
𝑖∗

)]}
,

i.e.,

𝑞
(
𝜓𝑖 ||𝐲,𝐗,𝐙, 𝐭0, 𝐭1,𝝍−𝑖; 𝜂𝑡

) 𝑑
=𝑁

(
𝑠2𝑖𝑚𝑖∗ + 𝑠

2
𝑖∗𝑚𝑖

𝑠2𝑖 + 𝑠
2
𝑖∗

,
𝑠2𝑖 𝑠

2
𝑖∗

𝑠2𝑖 + 𝑠
2
𝑖∗

)
,

where 𝑚𝑖∗ and 𝑠2𝑖∗ represent the mean and variance of (17).
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TABLE 4 Bias value and model-based variance of the estimated parameters based on the various ME models:
Gaussian, skew Gaussian, GLG, and unified skew GLG. Results are based on R = 1000 simulations each with a
sample of size 𝑛 = 125 (a subset of size 100 was randomly selected and used for model training, and the remaining
25 samples were used for prediction). ARPE: the average of the square root of the mean squared prediction errors;
AIC: Akaike information criterion.

Gaussian Skew Gaussian GLG Unified Skew GLG

Parameter True value Bias variance Bias variance Bias variance Bias variance
𝛽0 2 −1.845 1.380 1.509 1.019 −1.418 1.175 −0.033 0.089
𝛽1 3.5 2.361 1.815 −1.926 1.743 1.653 1.351 0.272 0.147
𝜇𝑥 0 −3.739 3.391 −2.952 2.839 2.014 2.193 0.153 0.116
𝜎2𝑥 1 2.162 2.052 1.903 1.410 1.835 1.544 0.329 0.417
𝛾 1.75 3.567 2.136 2.421 1.815 2.250 1.960 0.258 0.209
𝛼 −2.5 - - 1.855 2.079 - - −0.349 0.221
𝜈 0.85 - - - - −0.642 0.566 −0.305 0.238
𝜃 0.03 3.245 2.349 2.519 1.830 2.042 1.761 0.298 0.324

ARPE (VRPE) 11.957 (7.431) 8.539 (4.246) 7.265 (3.541) 0.960 (0.137)

AIC 992.3 845.5 784.1 367.4

FIGURE 1 (a): Left panel shows the true spatial surface and right panel shows the predicted spatial surface. (b):
Variogram of the difference between the true and predicted spatial surface.
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FIGURE 2 Left panel shows the spatial location of the synoptic weather stations in Iran; the coordinates (latitude
and longitude) are in decimal degrees. Right panel displays the histogram, normal density, and kernel density
estimates of the maximum PM10 concentration.

FIGURE 3 Panels (a) and (b) show the normal Q-Q plots of the maximum PM10 and the residuals, respectively.
Panel (c) represents the normal residuals density estimate where the solid line is the kernel density estimate (with
kernel=Gaussian and bandwidth=2.48) and the dashed line indicates normal density.
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FIGURE 4 Left panel shows the H-scatterplot corresponding to the Euclidean distance ‖ℎ‖. Right panel shows
the omnidirectional experimental semi-variogram of the maximum PM10 concentration.

TABLE 5 Results of fitting proposed model to the PM10 data with different values for 𝜎2 based on AIC.

𝜎2 0.1 0.25 0.45 0.65 0.95 1.15 1.3
AIC 942.1 917.3 874.3 832.6 923.2 1012.0 1134.3
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TABLE 6 The estimated value (EVal) and the estimated standard error (ESE) of parameters for the analysis of the
maximum PM10 concentration using proposed model (USGLG) and its competitors: naive, GLG, skew Gaussian,
and Gaussian. The model comparison is done using AIC.

USGLG USGLG (naive) GLG ME Skew Gaussian ME Gaussian ME

Parameter EVal ESE EVal ESE EVal ESE EVal ESE EVal ESE
𝛽0 16.38 0.51 18.42 1.65 14.34 2.17 19.10 2.26 19.02 3.31
𝛽1 3.64 0.45 2.97 1.26 4.87 2.03 2.21 2.44 2.47 3.05
𝜇𝑥 32.14 0.78 36.22 1.81 40.57 3.46 38.85 4.11 46.71 6.23
𝜎𝑥 9.67 0.83 14.31 2.15 15.52 2.58 15.21 2.63 19.30 5.12
𝛾 1.84 0.80 1.03 2.31 3.25 2.81 3.07 2.66 4.61 3.98
𝛼 2.77 0.85 3.16 2.11 - - 3.69 2.84 - -
𝜈 0.82 0.96 0.94 1.35 2.31 1.41 - - - -
𝜃 0.15 0.50 0.34 0.89 1.18 1.32 1.25 1.74 2.23 2.12

AIC 833.4 1450.2 1732.4 1736.7 1983.1

FIGURE 5 Map of predicted maximum PM10 concentration based on the proposed model (left panel) and
Gaussian ME model (right panel).
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