## Q1]. . [9 points]

Let $f(x)$ be a function. Give the formal definition of the limit statements:
(a) $\lim _{x \rightarrow a} f(x)=L$
(b) $\lim _{x \rightarrow-\infty} f(x)=L$
(c) $\lim _{x \rightarrow a} f(x)$ is NOT equal to $L$ (negate the statement in part (a))

Q2]...[6 points]
Let $f(x)$ be a real-valued function.
(a) State the meaning of the phrase " $f(x)$ is continuous at $x=a "$.
(b) State the definition of the derivative $f^{\prime}(a)$.

Q3]... [10 points] Use the $\epsilon-\delta$ definition of a limit to show that $\lim _{x \rightarrow 2} \frac{x-2}{1+x^{2}}=0$.
Q4]...[15 points] Calculate the given limits, or state that they do not exist. You do NOT need to use $\epsilon-\delta$ reasoning, and you may use the limit laws without further justification.
(a) $\lim _{x \rightarrow 1^{-}} \frac{1}{|x-1|}$
(b) $\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x+1}-\frac{x^{2}}{x-1}\right)$
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$

Q5]...[10 points] Use the the definition of the derivative to calculate $f^{\prime}(1)$ if $f(x)=\frac{1}{x^{2}}$.
Q6]. . . [10 points] Use differentiation rules to complete the following calculations:
(a) Calculate $y^{\prime}$ and $y^{\prime \prime}$ if $y=\frac{\sin (x)}{x}$.
(b) Compute the derivative of $f(x)=\tan \left(\frac{x^{2}}{x^{3}-1}\right)$.

Q7]...[10 points] Use the intermediate value theorem to prove that $x^{3}-3 x+1=0$ has at least three solutions in the interval $[-2,2]$.

