DATE: April 16, 2010

FINAL EXAMINATION

PAGE 1 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

$$x + y - z = 3$$
[8] 1. a) Use Gaussian Elimination to solve the linear system $-x + 3y + z = 1$

$$2x + y + z = 2$$

$$\begin{bmatrix} 1 & 1 & -1 & 3 \\ 0 & 4 & 0 & 4 \\ 0 & -1 & 3 & -4 \end{bmatrix} R_3 \leftarrow R_3 + \frac{1}{4}R_2$$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 3 \\
0 & 4 & 0 & 4 \\
0 & 0 & 3 & -3
\end{array}\right]$$

so by back substitution $x_3 = -1$, $x_2 = 1$, $x_1 = 3 - 1 + (-1) = 1$.

b) Check your solutions from part a).

DATE: <u>April 16, 2010</u>

FINAL EXAMINATION

PAGE 2 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

- [8] 2. Fill in the blanks. No justification is needed.
 - a) If A is a 3×3 matrix with det(A) = -2, then A adjA is $\frac{21}{4}$
 - b) If A is a 3×3 matrix with det(A) = -2, then det(A adjA) is ______.
 - Let A, B and C be three 4×4 matrices with $\det(A)=3$, $\det(B^{T})=-2$ and $\det(C)=4$. Then $\det(2ABC^{-1})$ is equal to 24.
 - d) For the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & -2 \\ 2 & 0 & 3 \end{bmatrix}$, the cofactor C_{23} is ______.
 - e) Let $A = (a_{ij})$ be the 17 x 17 matrix with $a_{ij} = \begin{cases} -1, & i \ge j \\ 0, & i < j \end{cases}$. Then $\det(A)$ is ______.
 - f) Let A, B and C be three $n \times n$ invertible matrices. Given that $AB^{-1}C^{-1} = I$, where I is the identity $n \times n$ matrix, find B in terms of A and C. B = $C^{-1}A$.
 - g) If A is a 4×4 matrix reduced to B by performing the elementary row operations (i) switch R_2 and R_3 , end then (ii) add $-2 R_4$ to R_1 , then the two elementary row matrices E_1 and E_2 such that $B=E_2E_1A$ are

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad E_{2} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DATE: April 16, 2010

FINAL EXAMINATION

PAGE 3 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

[12] 3. Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$$
 and let $B = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.

Find the matrix $C = A^2 - B$. a)

$$A^{2} - B = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 0 & 0 \\ 2 & -2 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ 1 & 1 & -1 \\ 2 & -3 & -2 \end{bmatrix}$$

b) Find the inverse of A, using row operations.

The row reduction is:
$$\begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} R_1 \leftrightarrow R_3 \\ R_1 \leftarrow \frac{1}{2}R_1 \\ R_2 \leftrightarrow R_3 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{array}{c} R_2 \leftarrow R_2 - R_1 \\ R_2 \leftarrow -R_2 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & -1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
so $A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ -1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$.

c) Find all values of k for which the matrix $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is invertible.

$$\det \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 2 & k & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & -1 \\ 2 & k \end{bmatrix} = -(k+2)$$

so the matrix is invertible if and only if $k \neq -2$.

DATE: April 16, 2010 FINAL EXAMINATION

PAGE 4 of 8

DEPARTMENT & COURSE NO: MATH 1300 TIME

TIME: 2 hours

EXAMINATION: <u>Vector Geom. & Lin. Alg.</u> EXAMINER: <u>Various</u>

Values

[8] 4. Let $\mathbf{u} = (1, 1, -1, -1)$ and $\mathbf{v} = (1, 1, 1, 1)$ be two vectors in 4-space \mathbf{R}^4 .

a) Find the length of \mathbf{u} . $\|\mathbf{u}\| = \sqrt{1+1+1+1} = 2$

b) Find the dot product of \mathbf{u} and \mathbf{v} , $\mathbf{u} \cdot \mathbf{v} = 1 + 1 + (-1) + (-1) = 0$

c) Find a unit vector in \mathbb{R}^4 that is orthogonal to both \mathbf{u} and \mathbf{v} .

Let
$$\mathbf{x} = (x_1, x_2, x_3, x_4)$$
. Then

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$x_1 + x_2 + x_3 + x_4 = 0$$

and so $(x_1 + x_2) = (x_3 + x_4) = 0$. Hence any vector of the form (t, -t, u, -u) is orthogonal to \mathbf{u} and \mathbf{v} . The additional condition $2t^2 + 2u^2 = 1$ is necessary to have a unit vector. The most striaghtforward solution is $(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$.

[9] 5. The equation 2x - y + z = 1 is an equation of the plane π .

a) Find an equation of the plane parallel to the plane π and that passes though the point (2,2,4).

$$2(x-2) - (y-2) + (z-4) = 0$$
, or $2x - y + z = 6$

b) Find parametric equations of the line parallel to the plane π , passing through the point (2,2,4) and perpendicular to the vector $\mathbf{u} = (1,0,1)$.

(x,y,z)=(2,2,4)+t(a,b,c)=(2+ta,2+tb,4+tc). Being in the plane in (a) implies 2a-b+c=0, while being orthogonal to (1,0,1) implies a+c=0. This in turn implies (a,b,c)=(a,a,-a)=a(1,1,-1).

DATE: April 16, 2010

FINAL EXAMINATION

PAGE 5 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

[9] 6. Let
$$\mathbf{u} = (1, 2, 3)$$
 and $\mathbf{v} = (-1, 1, 0)$.

a) Find the area of the triangle determined by the vectors $\, u \,$ and $\, v \,$.

Since
$$\mathbf{u} \times \mathbf{v} = (-3, -3, 3)$$
, the area is $\frac{1}{2} \| (-3, -3, 3) \| = \frac{1}{2} \sqrt{27} = \frac{3}{2} \sqrt{3}$.

b) Find the vector $\mathbf{w} = proj_{\mathbf{v}} \mathbf{u}$.

$$\mathbf{w} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{1}{2} (-1, 1, 0).$$

c) Find $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$ where \mathbf{w} is the vector from b).

$$\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \frac{1}{2} \det \begin{bmatrix} -1 & 1 & 0 \\ 1 & 2 & 3 \\ -1 & 1 & 0 \end{bmatrix} = -\frac{3}{2} \det \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} = 0$$
 (or observe $R_1 = R_3$).

[9] 7. Determine if W is a subspace of the vector space V. Show your work.

a)
$$V = M_{22}$$
 and $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad = 1 \right\}$ (W is the set of all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $ad = 1$).

Since $\mathbf{0}$ is not in W, it is not a subspace.

b) $V = \mathbb{R}^2$ and $W = \{(x,y): 2x + 5y = -1\}$ (W is the set of all pairs of real numbers (x,y) such that 2x + 5y = -1).

Since $\mathbf{0}$ is not in W, it is not a subspace.

DATE: <u>April 16, 2010</u>

FINAL EXAMINATION

PAGE 6 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

c) $V = \mathbb{R}$ and $W = \{(x,y,z) : x - y = 0\}$ (W is the set of all triples of real number (x,y,z) such that x - y = 0).

Let $\mathbf{u} = (x_1, y_1, z_1)$ and $\mathbf{v} = (x_2, y_2, z_2)$ be in W, that is, $x_1 - y_1 = x_2 - y_2 = 0$. Then $\mathbf{u} + \mathbf{v} = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ and $(x_1 + x_2) - (y_1 - y_2) = x_1 - y_1 + x_2 - y_2 = 0 + 0 = 0$, and so $\mathbf{u} + \mathbf{v}$ is also in W. Similarly $r\mathbf{u} = r(x_1, y_1, z_1) = (rx_1, ry_1, rz_1)$ and $rx_1 - ry_1 = r(x_1 - y_1) = r \cdot 0 = 0$, and $r\mathbf{u}$ is in W. Hence W is a subspace.

[8] 8. Let
$$p(x) = 2-x^2$$
, $q(x) = 1+x+x^2$ and $r(x) = 1-x$.

a) Determine if p is a linear combination of q and r. Show your work.

$$2 - x^2 = r_1(1 + x + x^2) + r_2(1 - x)$$
 implies

$$2 = r_1 + r_2 \tag{1}$$

$$0 = r_1 - r_2 \tag{2}$$

$$-1 = r_1 \tag{3}$$

From (2) and (3) we have $r_1 = r_2 = -1$. Hence (1) is inconsistent, and so p is not a linear combination of q and w.

b) Is p in the span of $\{q,r\}$? Explain.

No, by definition, from (a).

DATE: April 16, 2010

FINAL EXAMINATION

PAGE 7 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

[8] 9. Find all values of k such that the set of vectors $\{(1,0,1,0),(k,0,3,0),(0,0,1,-1),(0,1,0,1)\}$ is a basis of \mathbb{R}^4 . Show your work.

$$\det\begin{bmatrix} 1 & 0 & 1 & 0 \\ k & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \det\begin{bmatrix} 0 & 3 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} - k \det\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \det\begin{bmatrix} 3 & 0 \\ 1 & -1 \end{bmatrix} - k \det\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= -3 + k$$

so the set of vectors is linearly independent if and only if $k \neq 3$.

[8] 10. Let $R = \begin{bmatrix} 1 & 0 & 0 & -2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ be the reduced row echelon form of a matrix A.

a) Find the solution set of the homogeneous system with coefficient matrix A, i.e. The null space of A.

The free variables are assigned $x_2 = s$ and $x_4 = t$. The the constrained variables are $x_1 = 2t$, $x_3 = -t$, and $x_5 = 0$. Hence **x** is in the solution space if and only if $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) = (2t, s, -t, t, 0) = s(0, 1, 0, 0, 0) + t(2, 0, -1, 1, 0)$.

b) Find a basis of the null space of A. $\{(0,1,0,0,0),(2,0,-1,1,0)\}$ is a basis.

c) The dimension of the null space of A is ______

DATE: April 16, 2010

FINAL EXAMINATION

PAGE 8 of 8

DEPARTMENT & COURSE NO: MATH 1300

TIME: 2 hours

EXAMINATION: Vector Geom. & Lin. Alg.

EXAMINER: Various

Values

[8]	11. If A is a non-invertible 6×6 matrix, state whether each of the following statements is TRUE or
	FALSE (No explanation is necessary).

a) The linear system Ax = b is inconsistent, whenever $b \neq 0$.

b) A can be written as a product of elementary matrices.

c) If R is the reduced row echelon form of A, then det(R) = 0.

d) If A is a diagonal matrix, all of the diagonal entries are zero.

e) If $\mathbf{b} \neq \mathbf{0}$, the solution set of the linear system $A\mathbf{x} = \mathbf{b}$ is a vector space.

f) The column space of A is a subspace of \mathbb{R}^6 .

g) The largest possible dimension of the column space of A is 5.

h) The largest possible dimension of the null space is 5.

[5] 12. If $\{u, v, w\}$ is a linearly dependent set, then w is a linear combination of u and v.

Prove that this statement is true, or give an example to show that it is false.

The statement is false. A simple counterexample from 2-space: $\mathbf{u} = (0,0)$, $\mathbf{v} = (1,0)$, and $\mathbf{w} = (0,1)$.