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Always show (justify) your work unless otherwise stated! 
 
(8) 1. Solve, by Gauss elimination, the following system of linear equations. (Note: no 
marks will be given if other methods are used.) 
 

    
y = !7

x + y ! 2z = 1
y ! z = 4

 

 

Solution.  The augmented matrix for this system is 

 

0 1 0 ! !7
1 1 !2 ! 1
0 1 !1 ! 4

"

#

$
$
$

%

&

'
'
'

. We find th REF of 

this matrix using row operations: 
 

 

0 1 0 ! !7
1 1 !2 ! 1
0 1 !1 ! 4

"

#

$
$
$

%

&

'
'
'
(

R1)R2
1 1 !2 ! 1
0 1 0 ! !7
0 1 !1 ! 4

"

#

$
$
$

%

&

'
'
'

(
(!1)R2  to R3

1 1 !2 ! 1
0 1 0 ! !7
0 0 !1 ! 11

"

#

$
$
$

%

&

'
'
'

(
(!1)R3

1 1 !2 ! 1
0 1 0 ! !7
0 0 1 ! !11

"

#

$
$
$

%

&

'
'
'

 

The last matrix is in REF.  
 

The system associated to the last matrix is 
x + y ! 2z = 1

y = !7
z = !11

. We subsitute the values of y and 

z (from the second and third equation) into the first equation to get x ! 7 + 22 = 1, from where we 
calculate x = !14 .  
 
Hence the only solution of the system is (x, y, z) = (!14,!7,11) . 
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(10) 2. In the following system a and b  are constants. 
  

     
x + 2ay = 2
2x + 2y = b

 

 
(a) Find all values of a and b, if any, such that the system has a unique solution. 
(b) Find all values of a and b, if any, such that the system is inconsistent. 
(c) Find all values of a and b, if any, such that the system has infinitely many solutions. 

 
Note: you are NOT asked to solve the system. So, do NOT solve it. 
 

Solution. The augmented matrix of the system is 
 

1 2a ! 2
2 2 ! b

!

"
#

$

%
& . We perform one row 

operation: 
 

1 2a ! 2
2 2 ! b

!

"
#

$

%
& '

((2)R1  to R2 1 2a ! 2
0 2 ( 4a ! b ( 4

!

"
#

$

%
& . 

(a) If 2 ! 4a " 0  then the system will have a unique solution. This happens for all a, except 

a = 1
2

. 

(b) If 2 ! 4a = 0  and at the same time b ! 4 " 0 , then the system is inconsitent. This happens 

for a = 1
2

 and for any b such that b ! 4 . 

(c) If 2 ! 4a = 0  and at the same time b ! 4 = 0 , then the system has infinitely many 

solutions. This happens for a = 1
2

 and for b = 4 . 

 

(8) 3. Consider the matrix A =
k k 0
k2 2 k
0 k k

!

"

#
#
#

$

%

&
&
&

.  

 (a) Compute detA . 
 (b) Determine all values k such that A is NOT invertible? Do not forget to show your 
work and justify your answer. 
 
Solution.  
 (a) detA = 2k2 ! k 4 ! k 3 . 
 
 (b) A is not invertible if and only if detA = 0 . We solve: 
2k2 ! k 4 ! k 3 = 0" k2 (2 ! k ! k2 ) = 0" k2 (1! k)(2 + k) = 0 , and the last equation is true if and 
only if k = 0 , or k = 1 , or k = !2 . 
 So A is not invertible only if k = 0 , or k = 1 , or k = !2 . 
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(8) 4. Express A = 2 1
1 0

!

"
#

$

%
&  as a product of elementary matrices. Show your work and find 

explicitly the elementary matrices in the product. 
 

Solution.  First we row reduce A: 2 1
1 0

!

"
#

$

%
& '
R1(R2 1 0

2 1
!

"
#

$

%
& '

()2)R1  to R2 1 0
0 1

!

"
#

$

%
& . The elementary 

matrix associated to the first row operation that we have used above is E1 =
0 1
1 0

!

"
#

$

%
& , and the 

elementary matrix associated to the second row operations is E2 =
1 0
!2 1

"

#
$

%

&
' .  

 
 Their inverses can be obtrained from I by applying the corresponding reverse row 

operations: E1
!1 = 0 1

1 0
"

#
$

%

&
'  and E2

!1 = 1 0
2 1

"

#
$

%

&
' .  

 
 From the theory relating row operations and elementary matrices and from the row 
reduction performed above we have E2E1A = I . From here we find A = E1

!1E2
!1I = E1

!1E2
!1 . 

Subsituting E1
!1 = 0 1

1 0
"

#
$

%

&
'  and E2

!1 = 1 0
2 1

"

#
$

%

&
' , we have  A = 0 1

1 0
!

"
#

$

%
&

1 0
2 1

!

"
#

$

%
& . 

 
 
(8)  5.    Consider the system  

 
x + y ! z = 0
2x ! y + 2z = 6
!x ! y ! z = !6

.  

Use Cramer’s rule to solve ONLY for y. (So, you should NOT solve for x and z.)  
 

Solution : The coefficient matrix is A =
1 1 !1
2 !1 2
!1 !1 !1

"

#

$
$
$

%

&

'
'
'

, and A2 =
1 0 !1
2 6 2
!1 !6 !1

"

#

$
$
$

%

&

'
'
'

. We 

compute detA = 1! 2 + 2 +1+ 2 + 2 = 6  and detA2 = !6+12! 6+12 = +12 . Hence 

y = detA2
detA

=
12
6
= 2 . 
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(9) 6. Suppose A, B are 3! 3  martices with detA = 1
4

 and detB = 5 . Suppose further that C 

is an invertible 4 ! 4  matrix, and D =

1 2 !1 0
!1 !2 1 1
2 4 2 4
0 0 1 !7

"

#

$
$
$
$

%

&

'
'
'
'

. 

 Evaluate the following expressions. 
 (a) det(2AB)   
 (b) det(ABAT )   
 (c) det(CDC!1)   
 (d) det(Adj(A))   
 
 
Solution.  

(a) det(2AB) = 23( ) 1
4

!
"#

$
%& 5( ) = 10 . 

 

(b) det(ABAT ) = detA detB detAT = 1
4

!
"#

$
%& 5( ) 1

4
!
"#

$
%& =

5
16

. 

 
(c) Notice that the second column is twice the first column. Hence detD = 0 . Consequently 
det(CDC!1) = 0  too. 
 

(d) Recall that A!1 = 1
detA

Adj(A) . Apply determinant to both sides, get  

det(A!1) = det 1
detA

Adj(A)"
#$

%
&' . We know detA!1 = 1

detA
= 4 , and 

det 1
detA

Adj(A)!
"#

$
%& = det 4Adj(A)( ) = 43 det Adj(A)( ) . Hence 4 = 43 det Adj(A)( ) , form where we 

compute 1
16

= det Adj(A)( ) . 
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(9) 7. (a) Use row-reduction to find the inverse of the matrix A =
2 0 2
0 1 !1
0 1 !2

"

#

$
$
$

%

&

'
'
'

. 

 (b) Find Adj(A) . [Hint: there is a shortcut.] 
       
Solution. (a)

 

2 0 2 ! 1 0 0
0 1 !1 ! 0 1 0
0 1 !2 ! 0 0 1

"

#

$
$
$

%

&

'
'
'
(

( 1
2)R2  1 0 1 ! 1

2 0 0

0 1 !1 ! 0 1 0
0 1 !2 ! 0 0 1

"

#

$
$
$

%

&

'
'
'

(
(!1)R2  to R3  1 0 1 ! 1

2 0 0

0 1 !1 ! 0 1 0
0 0 !1 ! 0 !1 1

"

#

$
$
$

%

&

'
'
'

(
(!1)R3  1 0 1 ! 1

2 0 0

0 1 !1 ! 0 1 0
0 0 1 ! 0 1 !1

"

#

$
$
$

%

&

'
'
'

(
(!1)R3  to R1

R3  to R2  1 0 0 ! 1
2 !1 1

0 1 0 ! 0 2 !1
0 0 1 ! 0 1 !1

"

#

$
$
$

%

&

'
'
'

 

Hence A!1 =

1
2 !1 1

0 2 !1
0 1 !1

"

#

$
$
$

%

&

'
'
' . 

 

(b) Since A!1 = 1
detA

Adj(A) , it follows that detA( )A!1 = Adj(A) . We compute detA = !2 . 

Hence Adj(A) = detA( )A!1 = (!2)A!1 = (!2)
1
2 !1 1

0 2 !1
0 1 !1

"

#

$
$
$

%

&

'
'
'
=

!1 2 !2
0 !4 2
0 !2 2

"

#

$
$
$

%

&

'
'
'
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