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1. The augmented matrix of a linear system is A =

1 2 a 4
0 1 b 5
0 0 a+ 2b a2 − 4b2

 .

Find all values of a and b (if any) such that the system has

(a)[3] infinitely many solutions;

(b)[3] exactly one solution;

(c)[3] no solution.
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2. Let A =

0 1 0
1 1 0
1 3 1

 .

(a)[5] Find the matrix B such that A2 −
(

det(AT )
)
B = 4I .

(b)[5] Find A−1 .

(c)[3] Evaluate |A+ A−1| .
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3. Let A =

[
3 −2
7 −5

]
.

(a)[4] Find det(A) and det(A2015) .

(b)[4] Find (adj(A))−1 .
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4. Let ~u = (−1, 1, 2) and ~v = (0, 2, 4) be vectors in R3.

(a)[5] Evaluate ‖~u‖(~v − 2~u) where ‖~u‖ stands for the length of ~u .

(b)[5] Find proj ~v ~u .

(c)[4] Find a unit vector that is perpendicular to both ~u and ~v.
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5. Let P1 = (1,−1, 2), P2 = (2, 0, 4) and P3 = (4, 0, 3) be three points in R3.

(a)[5] Find the area of the triangle determined by these three points.

(b)[4] Is the triangle determined by these points a right-angled triangle? Explain
your answer.
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6. Let Π1 : x+ 3y − z = 1 and Π2 : x+ 4y + 3z = 2 be two planes,
L : (x, y, z) = (1, 0, 2) + t(1, 2, 3), t ∈ R, be a line and A(−2, 3,−1) be a point in
R3 .

(a)[5] Find the distance between the point A and the plane Π1.

(b)[4] Find the parametric equations of the line of the intersection of the planes
Π1 and Π2.

(c)[4] Find the point of intersection of the line L and the plane Π2.
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7.[5] Consider the vectors ~OP = (3,−2, 3), ~OQ = (1, 1, 1) and ~OR = (0, 5, 0) in R3.
Show that the points O, P , Q and R lie in the same plane.
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8. Let T : R3 → R3 be the linear transformation that sends each vector v (starting
at the origin) to its reflection with respect to the xy-plane.

(a)[5] Find the standard matrix A of the linear transformation T .

(b)[4] Let B = A3 where A is the matrix found in part (a). Find TB(1, 2, 3) if
TB is the matrix transformation for the matrix B .
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9. Let A =

2 0 0
1 2 −1
1 3 −2

 .

(a)[3] Find the characteristic polynomial for the matrix A .

(b)[3] Two eigenvalues for the matrix A are λ1 = 1 and λ2 = 2 . Find the third
eigenvalue.

(c)[4] Find one specific eigenvector associated to the eigenvalue λ = 2 .
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10. The eigenvalues of the matrix A =

[
0 1
2 1

]
are λ1 = 1 and λ2 = 2 , and

v1 =

[
1
−1

]
and v2 =

[
1
2

]
are two eigenvectors corresponding to λ1 and λ2

respectively.

(a)[6] Find a matrix P such that P−1AP is a diagonal matrix D , and find the
matrix D .

(b)[4] Find A10 .
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