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1.[10] Use Cramer’s rule to solve the linear system

x1 − 2x2 + 4x3 = 1
−x1 + 3x2 − 5x3 = 2
2x1 − x2 + 6x3 = −1
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2.[12] Suppose A, B and C are 3 × 3 matrices such that det(A) = 10, det(B) =
1

3
and

det(C) = 2. Evaluate the following:

(a) det(BAB−1) (b) det(CBCT ) (c) det(5BC) (d) det(Adj(B))

and justify your work.
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3. Let ~u = (2,−2, 1), ~v = (4, 3,−5) and ~w = (−1, 3, 2).

(a)[4] Find the cosine of the angle θ between ~u and ~v.

(b)[5] Find the vector component of ~u along ~v.

(c)[2] Find the vector component of ~u orthogonal to ~v.

(d)[2] Find the volume of the parallelepiped determined by the vectors ~u, ~v and ~w.
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4.[5] Find a point-normal form equation of the plane containing two lines

x = 6− t
y = −5 + 3t
z = −4 + t

and
x = 3 + s
y = 2− s
z = −4 + 2s

where t, s ∈ R.
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5. Let L be the line x = 1 + 4t, y = 2− 3t, z = 4 + t and Π be the plane 7x+ y + 9z = 10.

(a)[3] Find the point of intersection of the line L and the plane 2x− 3y + z = 36.

(b)[3] Find the equation of the plane that is perpendicular to the line L and passes
through the point (3, 1, 2).

(c)[3] Find the distance from the point (2, 3,−1) to the plane Π.
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6.[7] Let A =

0 1 3
1 1 4
1 −1 −2

. Find the characteristic equation and all eigenvalues of A.
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7.[4] Given that 2 is an eigenvalue for A =

[
1 −2
1 4

]
. Find the eigenvectors for A corresponding

to the eigenvalue 2.
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8. Suppose T : R2 → R2 is the linear transformation that represents a counterclockwise

rotation of each vector around the origin through an angle of θ =
π

6
.

(a)[3] Find the standard matrix of T .

(b)[2] Evaluate T (
√

3, 2).
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9.[10] True-False Exercises

(a) Every elementary matrix is invertible.

(b) For all square matrices A and B, it is true that det(A+B) = det(A) + det(B).

(c) If A is a square matrix with two identical columns, then det(A) = 0.

(d) IfA andB are square matrices of the same size andA is invertible, then det(A−1BA) =
det(B).

(e) Every vector in Rn has a positive norm.

(f) For all vectors ~u and ~v, it is true that ||~u+ ~v|| = ||~u||+ ||~v||.
(g) The vector equation of a plane can be determined from any point lying in the plane

and a nonzero vector parallel to the plane.

(h) The vectors ~v + (~u+ ~w) and (~w + ~v) + ~u are the same.

(i) For all vectors ~u,~v, and ~w in 3-space, the vectors (~u× ~v)× ~w and ~u× (~v × ~w) are
the same.

(j) If A is a square matrix and A~x = λ~x for some nonzero scalar λ, then ~x is an
eigenvector of A.
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10.[5] (Bonus Question) Prove that ~u is orthogonal to ~u× ~v.
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