UNIVERSITY OF MANITOBA

EXAMINATION: Vector Geometry and Linear Algebra

NAME: (Print in ink) \qquad
STUDENT NUMBER: \qquad
SEAT NUMBER: \qquad
SIGNATURE: (in ink)
(I understand that cheating is a serious offense)

Please place a check mark (\checkmark) for your section.

\square	A01	10:30-11:20 AM	MWF (206 Human Ecology)	Michel Virgilio
\square	A02	10:00-11:15 AM	TR (206 Human Ecology)	Michael Szestopalow
\square	A03	$1: 30-2: 20$ PM	MWF (206 Human Ecology)	G. I. Moghaddam
\square	D01	Distance Course	On Line Education	Stephanie Portet

INSTRUCTIONS TO STUDENTS:

This is a 1 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 8 pages of questions and also 1 blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 60 points.

Answer all questions on the exam

 paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLYINDICATE that your work is continued.

EXAMINATION: Vector Geometry and Linear Algebra
[9] 1. Solve the following system of linear equations:

$$
\begin{aligned}
5 w+7 x+3 y+3 z & =2 \\
-x+y+z & =-1 \\
x-y-z & =1 \\
4 w+5 x+3 y+3 z & =1 .
\end{aligned}
$$

Indicate what elementary row operations you are using.

EXAMINATION: Vector Geometry and Linear Algebra
2. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}12 \\ 12 \\ 12\end{array}\right)$.
[6] (a) Compute A^{-1}.
[3] (b) Solve $A \mathbf{x}=\mathbf{b}$ using A^{-1}.

UNIVERSITY OF MANITOBA

DATE: February 27, 2018
MIDTERM
PAGE: 3 of 9
EXAMINATION: Vector Geometry and Linear Algebra
TIME: 1 hour
COURSE: MATH $\overline{1300}$ EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio
[5] 3. Let A and B be $n \times n$ matrices. Simplify the following expression as much as possible:

$$
\left(A+B B^{T}\right)^{-1} B\left(I_{n}+B^{T} A^{-1} B\right) B^{-1} A
$$

Assume all necessary inverses exist.

EXAMINATION: Vector Geometry and Linear Algebra TIME: 1 hour COURSE: MATH $\overline{1300}$ EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio
[7] 4. Let $C=\left(\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right)$. Write C^{-1} as a product of elementary matrices.

UNIVERSITY OF MANITOBA

DATE: February 27, 2018
EXAMINATION: Vector Geometry and Linear Algebra
[10] 5. Let $X=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & -1\end{array}\right), Y=\left(\begin{array}{cc}1 & 4 \\ -2 & 3 \\ 1 & -2\end{array}\right)$, and $Z=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right)$. Compute the following, if they are defined. If not, explain why.
(a) $2 X^{T} Y+Z^{3}$
(b) $Y X-2 Z^{2}$
(c) $(X Y)^{T}-Z$

UNIVERSITY OF MANITOBA
DATE: February 27, 2018
EXAMINATION: Vector Geometry and Linear Algebra TIME: 1 hour COURSE: MATH $\overline{1300}$ EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio
[6] 6. Let $A=\left[\begin{array}{lll}3 & 3 & -4 \\ 0 & 3 & -1 \\ 0 & 0 & -2\end{array}\right]$. Given that $|B A-B|=60$ find $|B|$.

UNIVERSITY OF MANITOBA

DATE: February 27, 2018
MIDTERM
PAGE: 7 of 9
EXAMINATION: Vector Geometry and Linear Algebra TIME: 1 hour COURSE: MATH $\overline{1300}$ EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio
[6] 7. Let $\left|\begin{array}{ccc}2 & a & b \\ c & -1 & 3 \\ d & e & f\end{array}\right|=-7$. Use properties of determinant to evaluate $\left|\begin{array}{ccc}2 & a & b \\ 8-c & 4 a+1 & 4 b-3 \\ d+3 c & e-3 & f+9\end{array}\right|$. Explain your work.

UNIVERSITY OF MANITOBA

DATE: February 27, 2018
MIDTERM
PAGE: 8 of 9
EXAMINATION: Vector Geometry and Linear Algebra
TIME: 1 hour
COURSE: MATH $\overline{1300}$ EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio
[8] 8. Consider the following linear system in which a is a real number.

$$
\begin{aligned}
x & +3 z
\end{aligned}=6
$$

Use Cramer's rule to solve this linear system for y only.
(No mark will be given for any other method.)

UNIVERSITY OF MANITOBA

DATE: February 27, 2018	MIDTERM
	PAGE: 9 of 9
EXAMINATION: Vector Geometry and Linear Algebra	TIME: $\underline{1 \text { hour }}$
COURSE: MATH $\frac{1300}{1300}$	EXAMINER: Moghaddam, Portet, Szestopalow, Virgilio

BLANK PAGE FOR ROUGH WORK

