Real Numbers Axioms

Let + and · be two binary (closed) operations on R called addition and multiplication.

Field Axioms: $(R, +, \cdot)$ satisfies the following properties for all a, b and c in R:

- A1. a+b=b+a (commutativity of addition)
- A2. (a+b)+c = a+(b+c) (associativity of addition)
- A3. There exists an element 0 in R such that a+0=a (and 0+a=a) (existence of zero)
- A4. For each a in R, there exists an element -a in R such that a + (-a) = 0 (and (-a) + a = 0) (existence of negative)
- M1. $a \cdot b = b \cdot a$ (commutativity of multiplication)
- M2. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativity of multiplication)
- M3. There exists an element 1 in R, $1 \neq 0$, such that $a \cdot 1 = a (1 \cdot a = a)$ (existence of unit)
- M4. For each $a \neq 0$ there exists an element a^{-1} in R such that $a \cdot a^{-1} = 1$ (and $a^{-1} \cdot a = 1$) (existence of inverse)
- D. $a \cdot (b+c) = a \cdot b+a \cdot c$ (and $(b+c) \cdot a = b \cdot a+c \cdot a$) (distributivity)

Order Axioms: There exists a nonempty subset P of R called the set of positive real numbers, such that:

- 01. If a, b are in P, then a+b is in P.
- O2. If a, b are in P, then $a \cdot b$ is in P.
- 03. For a in R, exactly one of the following is true: a is in P, a=0, or -a is in P.

Completeness Axiom:

Every nonempty set of real numbers that has an upper bound has a supremum in R.