MATH 2080 Assignment No. 1, October 16, 2015

The assignment is due Friday, October 23, 2014, in class. Late assignments receive a mark of zero. Show all of your work and use the definitions given in class.

- 1. a) Prove that a supremum of a bounded above nonempty set A is unique, i.e. prove that if $s_1 = \sup A$ and $s_2 = \sup A$, then $s_1 = s_2$. [1]
 - b) Prove that every nonempty bounded below subset of \mathbb{R} has an infimum. [3]
 - c) Let A be a nonempty subset of \mathbb{R} that is bounded below. Prove that a lower bound l
 - of A is the infimum of A if and only if $\forall \varepsilon > 0, \exists a_{\varepsilon} \in A$ such that $a_{\varepsilon} < l + \varepsilon$. [3]
- 2. a) Show that if $\emptyset \neq A \subseteq B$ and *B* is bounded below, then $\inf B \leq \inf A$. [3] b) Show that if *A* and *B* are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded set. Show also that then $\sup(A \cup B) = \sup\{\sup A, \sup B\}$. [4]
 - c) Prove that for a nonempty, bounded above subsets A and B of \mathbb{R} , the set A + B is also bounded above and that $\sup (A+B) = \sup A + \sup B$. [4]
- 3. Let $S = \left\{\frac{1}{10^n} : n \in \mathbb{N}\right\}$. Use PMI to show that $\frac{1}{10^n} < \frac{1}{n}, \forall n \in \mathbb{N}$, and then use this,

the definition of infimum and the corollary to the Archimedean property to show that inf S = 0. (You cannot use limits of sequences.) [5]

4. Find the set *A* (proofs, **without using limits** are required):

a)
$$A = \bigcap_{n=1}^{\infty} I_n$$
, for $I_n = (1, 2 + \frac{1}{n}]$, [4]

b)
$$A = \bigcap_{n=1}^{\infty} I_n$$
, for $I_n = (2, 2 + \frac{1}{n})$, [3]

c)
$$A = \bigcap_{n=1}^{\infty} I_n$$
, for $I_n = [n, \infty)$. [3]

5. a) Let $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. Show that A is a nonempty bounded subset of \mathbb{R} . Find inf *A* and sup *A*. (Use the Corollary to the Archimedean property. You **cannot use limits**!) [3]

b) Let $A = \left\{\frac{1}{n} - \frac{1}{m}; n, m \in \mathbb{N}\right\}$. Show that *A* is a nonempty bounded set. Find inf *A* and sup *A*. (You can use part a), Q2. c), and a theorem proven in class on *inf* and *sup* of a product of a number with a set. You **cannot use limits**!) [3]

6. Let $\{I_k\}$ be a sequence of closed and bounded intervals, such that for any finite subset F of \mathbb{N} we have $\bigcap_{k \in F} I_k \neq \emptyset$. Show that $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$, by showing each of the following steps: a) In general, if I and J are any two closed bounded intervals and $I \cap J \neq \emptyset$, then $I \cap J$ is a closed bounded interval. [4]

b) Use the Principal of Mathematical Induction to show that if $J_n = \bigcap_{k=1}^n I_k$, then J_n is a closed and bounded interval, for all $n \in \mathbb{N}$. [4]

c) Use the Nested Intervals Theorem to show that $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$. [3]

Total [50 marks]