MATH2202, Assignment No. 1

September 23, 2013

The assignment is due Monday, September 30, 2013 in class. Late assignments receive a mark zero.

1. a) Prove that if $C=A \cup B$ and $A \cap B = \emptyset$, then $A=C \setminus B$. [5]

b) Let
$$A_n = \left[0, 2 - \frac{1}{n}\right]$$
, with $n \in \mathbb{N}$. Show that $\bigcup_{n=1}^{\infty} A_n \subseteq [0, 2)$ and that $[0, 1) \subseteq \bigcap_{n=1}^{\infty} A_n$.

Does $2 \in \bigcup_{n=1}^{\infty} A_n$ and does $1 \in \bigcap_{n=1}^{\infty} A_n$? Explain. [6]

2. Let $f(x) = \sqrt{1-x}$ and $g(x) = x^2 - 1$. Find the functions $f \circ g$ and $g \circ f$ if they exist, by first finding the domains, co-domains and ranges of f and g. Draw the graphs of all of functions which do exist (including f and g). [7]

3. a) Show that if f: $A \rightarrow B$ is surjective and $H \subseteq B$, then f (f⁻¹(H)) = H. Give an example to show that the equality need not hold if f is not surjective. [6]

b) If f is a bijection from A onto B, use the definition of f^{-1} to show that f^{-1} is also a bijection (from B onto A). [6]

4. a) Show that there is a bijection from \mathbb{N} into the set of all odd integers greater than 13. [3]

b) Find an example of a countable collection of finite sets such that their union is not finite, and find an example of a countable collection of finite sets such that their union is finite. [2]

c) Let A be countable infinite and let $A \subseteq B$. Prove that B is infinite. (You can use Theorem 1.3.3. that says that \mathbb{N} is an infinite set.) [6]

d) Show that |[0,1]| = |(0,1)|. [4]

5. For a and b in \mathbb{R} let $a \# b := \frac{ab}{2} + 1$. (Note: a # b is a binary operation mapping

 $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.) Check if for all a, b and c in \mathbb{R} :

a) $a \# b = b \# a$,	[2]
b) $a \# (b \# c) = (a \# b) \# c$,	[4]

c) there exists e in \mathbb{R} such that, for all a in \mathbb{R} , a # e = e # a = a. (Note: the question asks if there is one e that would do for all of the a's.) [4]

6. Use the field axioms of \mathbb{R} to prove that for $a, b \in \mathbb{R}$:

a) -(a+b) = (-a) + (-b), [3] b) If $a \cdot a = a$, then either a = 0, or a = 1, [3] c) If $a \neq 0$ and $b \neq 0$ then $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$. [3]

Total [64]