MATH2202, Assignment No. 1 September 22, 2014

The assignment is due Monday, September 29, 2014 in class. Late assignments receive a mark zero.

- 1. a) Prove that if $A \subseteq C$, $B \subseteq C$ and $C \setminus A \subseteq B$, then $C = A \cup B$. [4] b) Let $f(x) = \frac{-2x}{\sqrt{1+x^2}}$, $x \in \mathbb{R}$. Show that (the range of f) R(f) = (-2,2). [4]
- 2. a) Show that if f: A→ B is an injection and E⊆ A, then f⁻¹(f(E)) = E. Give an example of f, A, B and E to show that the equality need not hold if f is not injective. [4]
 b) If f is a bijection from A onto B then:
 f⁻¹(f(a)) = a, ∀a ∈ A and f(f⁻¹(b)) = b, ∀b ∈ B. [4]
 c) If f is a bijection from A onto B, use the definition of f⁻¹ to show that f⁻¹ is also a

c) If f is a bijection from A onto B, use the definition of \mathcal{J}^{-1} to show that \mathcal{J}^{-1} is also a bijection (from B onto A). [4]

- 3. Use the field axioms of R to prove that for a, b ∈ R:
 a) -(a+b)=(-a)+(-b), [3]
 b) If a≠0 and b≠0 then (a ⋅ b)⁻¹ = a⁻¹ ⋅ b⁻¹. [3]
 c) Prove that for any a, b ∈ R, a>b if and only if b<a, by using the field axioms and the two facts proven in class: -a = (-1)a, (-1)(-1) = 1. (Recall that a>b ⇔ a+(-b) ∈ P and b<a⇔ -(b+(-a) ∈ P.) [3]
- 4. For *a* and *b* in $\mathbb{R}^+ = (0, \infty)$ let $a \oplus b = ab$, and $a \odot b = a + b + 1$. Show that:
- a) \oplus and \odot are binary operations mapping $\mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$. [3]
- b) The field axioms A1, A2, A3 and A4 hold for \oplus . [4]
- c) The field axiom M1 and M2 hold, but M3 does not hold for \odot . [4]

5. Use the field and order axioms of \mathbb{R} and theorems proven in class to show that for $a, b \in \mathbb{R}$:

a) If a > 0, then $a^{-1} > 0$. [3] b) If a < b, then $a < 2^{-1}(a+b) < b$. [4]

6. Use the Principal of Mathematical Induction to show that:

a) There is no $n \in \mathbb{N}$ such that 0 < n < 1. [3] b) $n^3 + 5n$ is divisible by 6 for all n in \mathbb{N} . [3]

Total [53]
