MATH 2202 Assignment No. 2, October 10, 2014

The assignment is due Monday, October 20, 2014, in class. Late assignments receive mark zero.

1. a) Let
$$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
. Show that $\sup S = 1$, $\inf S = 0$. (Do not use limits.) [3]
b) Let $S = \left\{\frac{1}{10^n} : n \in \mathbb{N}\right\}$. Use PMI to show that $\frac{1}{10^n} < \frac{1}{n}, \forall n \in \mathbb{N}$, and then use this to

show that inf S=0. (You cannot use limits.) [4]

- 2. a) Prove that a supremum of a bounded above nonempty set A is unique, i.e. prove that if $s_1 = \sup A$ and $s_2 = \sup A$, then $s_1 = s_2$. [3]
 - b) Prove that every nonempty bounded below subset of \mathbb{R} has an infimum. [3]
 - c) Prove that for a nonempty, bounded above subsets A and B of \mathbb{R} , sup $(A+B) = \sup A + \sup B$. [4]
 - d) Show that if $\emptyset \neq A \subset B$ and B is bounded below, then $\inf B \leq \inf A$. [3]
- 3. Show that if I = [a,b], J = [c,d], both nonempty, then $I \subseteq J$ iff $c \le a \le b \le d$. [5]
- 4. Find the set A (proofs, without using limits are required):

a)
$$A = \bigcap_{n=1}^{\infty} I_n$$
, for $I_n = (3, 4 + \frac{1}{n}]$, [4]
b) $A = \bigcap_{n=1}^{\infty} I_n$, for $I_n = (1, 1 + \frac{1}{n})$, [4]

c)
$$A = \bigcap_{n=1}^{\infty} I_n$$
, for $I_n = [n, \infty)$. [4]

5. Let $\{I_k\}$ be a sequence of closed and bounded intervals such that for any finite set

 $F \subset \mathbb{N}$, we have $\bigcap_{k \in F} I_k \neq \emptyset$. Show that then $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$, by showing each of the following steps:

a) In general, if *I* and *J* are any two closed bounded intervals and $I \cap J \neq \emptyset$, then $I \cap J$ is a closed bounded interval. [4]

b) Use the Principal of Mathematical Induction to show that if $J_n = \bigcap_{k=1}^{n} I_k$, then J_n is a closed and bounded interval, for all $n \in \mathbb{N}$. [4]

c) Use the Nested Intervals Theorem to show that $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$. [3]

Total [48 marks]