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1. (a)[3] Let V be a vector space, W ⊂ V . Under what conditions is W a subspace
of V ?

Solution: If W is a set of one or more vectors from a vector space V ,
then W is a subspace of V if and only if the following conditions hold.

1. If u and v are vectors in W , then u+ v is in W .
[W closed under addition]

2. If k is any scalar and u is any vector in W , then ku is in W .
[W closed under scalar multiplication]

Marking scheme: Full marks for 1) Closed under addition and scalar
multiplication and contains at least one element (for example, contains
the zero vector) 2) Mathematical definition of properties 1 and 2 (since
it states u and v are vectors in W , it assumes W contains elements).

(b)[4] Let A be an n×n-matrix. State four additional properties equivalent to “A
is invertible”.

Solution: Four of the following:

1. Ax = 0 has only the trivial solution.

2. The reduced row-echelon form of A is In.

3. A can be expressed as a product of elementary matrices.
[A = E1 · · ·En, with E1, . . . , En elementary matrices.]

4. Ax = b is consistent for every matrix b.
[∀b, Ax = b is consistent.]

5. Ax = b has exactly one solution for every matrix b.
[∀b, Ax = b has exactly one solution.]

6. det(A) 6= 0.

Marking scheme: 1 per correct answer. If more than 4 answers pro-
vided, then the number of incorrect answers was deducted from 4. For
example: 5 answers with 3 correct and 2 incorrect gave 2 marks.
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(c)[3] Prove that u • (v × w) = v • (w × u).

Solution: We have

u • (v × w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
v1 v2 v3

u1 u2 u3

w1 w2 w3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
v1 v2 v3

w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣
= v • (w × u).

Could also be done by computing explicitly the values of the scalar triple
products in both cases.

Marking scheme: Setting up the problem: 1 mark. Starting compu-
tations: 1 mark. Getting the correct answer: 1 mark. Marks were
subtracted for badly presented reasoning.

(d)[2] Prove the Cauchy-Schwarz inequality in 3-space.

Solution: The Cauchy-Schwarz inequality states that given two vectors
u and v, the following inequality holds:

|u • v| ≤ ‖u‖ ‖v‖.

In 3-space, the dot product of vectors u and v is defined by

u • v = ‖u‖ ‖v‖ cos θ,

where θ is the angle between u and v. Therefore,

|u • v| =
∣∣‖u‖ ‖v‖ cos θ

∣∣ = ‖u‖ ‖v‖ | cos θ| ≤ ‖u‖ ‖v‖

since | cos θ| ≤ 1 for all θ, and the result is proved.

Marking scheme: Stating the result: 1 mark. Proving it: 1 mark.
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(e)[3] State 3 of the axioms that must be satisfied for a set V to be a vector space.

Solution: Three of the following 10:

1. If u and v are in V , then u+ v is in V .

2. u+ v = v + u.

3. u+ (v + w) = (u+ v) + w.

4. There is an object 0 in V , called a zero vector for V , such that
u+ 0 = u for all u in V .

5. For each u in V , there is an object −u in V , called a negative of u,
such that u+ (−u) = (−u) + u = 0.

6. If k is any scalar and u is any object in V , then ku is in V .

7. k(u+ v) = ku+ kv.

8. (k +m)u = ku+mu.

9. k(mu) = (km)u.

10. 1u = u.

Marking scheme: 1 mark per correct answer. If more than 3 answers
provided, then the number of incorrect answers was deducted from 3.
For example: 5 answers with 3 correct and 2 incorrect gave 1 mark.

(f) Let S = {v1, . . . , vp} be p vectors in an n-dimensional vector space V . State
whether the following statements are True or False.
[Note: the score on question (f) is the number of right answers minus the
number of wrong answers, with a minimum of 0.]

i.[1] If S is linearly independent, then p = n: FALSE

ii.[1] If S is a basis of V , then p = n: TRUE

iii.[1] If Span(S) = W , then W is a subspace of V : TRUE

iv.[1] If S is linearly independent, then S spans V : FALSE

v.[1] Let S ′ = {w1, . . . , wp} be a basis of V . Then S = S ′: FALSE
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2. Let

W =

{
M ∈M22;M =

[
a b
0 d

]
, for all a, b, d ∈ R

}
.

(a)[4] Show that W is a subspace of M22, the vector space of 2× 2-matrices.

Solution: Let k ∈ R,

M1 =

[
a1 b1
0 d1

]
∈ W and M2 =

[
a2 b2
0 d2

]
∈ W.

Then

M1 +M2 =

[
a1 + a2 b1 + b2

0 d1 + d2

]
∈ W,

so W is closed under addition, and

kM1 =

[
ka1 kb1
0 kd1

]
∈ W,

so W is closed under scalar multiplication. Therefore, W is a subspace
of M22.

Marking scheme: 2 marks per condition. If ∈ W is missing, take 1
mark off.

(b)[4] Is

S =

{(
1 0
0 0

)
,

(
2 0
0 0

)
,

(
0 2
0 0

)
,

(
0 0
0 1

)}
a basis of W? If not, how should S be modified in order to be a basis of W?

Solution: S is a basis of W if span(S) = W and S is linearly indepen-
dent. We have

span(S) =

{
k1

(
1 0
0 0

)
+ k2

(
2 0
0 0

)
+ k3

(
0 2
0 0

)
+ k4

(
0 0
0 1

)}
=

{(
k1 0
0 0

)
+

(
2k2 0
0 0

)
+

(
0 2k3

0 0

)
+

(
0 0
0 k4

)}
=

{(
k1 + 2k2 2k3

0 k4

)}
,

for all k1, k2, k3, k4 ∈ R. So span(S) = W .

On the other hand, we clearly have a relation between two of the matrices:(
2 0
0 0

)
= 2

(
1 0
0 0

)
,

and therefore S is not a basis of W since S is linearly dependent.

To get a basis, we use the Plus/Minus theorem:

span(S) = span

(
S −

{(
2 0
0 0

)})
.

The set S ′ resulting from the cut,

S ′ = S −
{(

2 0
0 0

)}
=

{(
1 0
0 0

)
,

(
2 0
0 0

)
,

(
0 0
0 1

)}
,
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is linearly independent and is a basis of W .

Marking scheme: 2 marks for establishing that S is not a basis because
S is linearly dependent. 2 marks for finding a good way to work around
the problem.
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3.[6] One of the matrices

A =

[
2 1
4 2

]
and B =

[
2 1
1 2

]
is expressible as a product of elementary matrices, the other is not. Express the
one that is expressible as a product of elementary matrices as such, and explain
why the other is not.

Solution: Matrix A has determinant 0. As a consequence, it cannot be
expressed as a product of elementary matrices.

|B| = 3 so we know that B can be expressed as a product of elementary
matrices. Perform, for instance, the following operations:

B
R1↔R2−→

[
1 2
2 1

]
R2←R2−2R1−→

[
1 2
0 −3

]
R2←−R2/3−→

[
1 2
0 1

]
R1←R1−2R2−→

[
1 0
0 1

]
.

The elementary matrices E1, E2, E3 and E4 corresponding to the sequence
of elementary operations indicated above allow to write E4E3E2E1B = I,
and therefore B = E−1

1 E−1
2 E−1

3 E−1
4 and the matrices we seek are the matrices

E−1
1 , E−1

2 , E−1
3 and E−1

4 that correspond to the reverse operations. Therefore,

B =

[
0 1
1 0

] [
1 0
2 1

] [
1 0
0 −3

] [
1 2
0 1

]
.

Marking scheme: 1 point for stating why A cannot be expressed as a prod-
uct of elementary matrices. 2 marks for correctly performing elementary row
operations on B. 1 mark for expressing B using the correct matrices. 2 marks
for correctly expressing the inverse matrices.

Other expressions:

B =

[
2 0
0 1

] [
1 0
1 1

] [
1 0
0 3/2

] [
1 1/2
0 1

]
,

B =

[
1 1
1 0

] [
1 0
1 1

] [
1 0
0 3

] [
1 −1
0 1

]
and

B =

[
1 2
0 1

] [
0 1
1 0

] [
1 0
0 −3

] [
1 2
0 1

]
.
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4.[5] Is the vector −1 + 9x− x2 in the span of the vectors

{1 + x+ 2x3, 3x+ x2 − x3, 1− x+ 2x2}?

Explain.

Solution: Let us compute the span of the vectors (we call the set S for
convenience):

span(S) = {p(x) = k1(1 + x+ 2x3) + k2(3x+ x2 − x3) + k3(1− x+ 2x2)}
= {p(x) = k1 + k3 + (k1 + 3k2 − k3)x+ (k2 + 2k3)x

2 + (2k1 − k2)x
3},

for all k1, k2, k3 ∈ R. Therefore, the vector −1 + 9x− x2 is in the span of S if
we can find k1, k2, k3 such that the coefficients of like degrees match, that is,

−1 = k1 + k3, 9 = k1 + 3k2 − k3, −1 = k2 + 2k3 and 0 = 2k1 − k2.

We thus consider the system

k1 + k3 = −1 (1a)

k1 + 3k2 − k3 = 9 (1b)

k2 + 2k3 = −1 (1c)

2k1 − k2 = 0 (1d)

Therefore, 
1 0 1 −1
1 3 −1 9
0 1 2 −1
2 −1 0 0

 R2←R2−R1−→
R3←R3−2R1


1 0 1 −1
0 3 −2 10
0 1 2 −1
0 −1 2 2


R4←R4+R3−→


1 0 1 −1
0 3 −2 10
0 1 2 −1
0 0 0 1

 .
This is a contradiction, so this system has no solution. So the vector −1 +
9x− x2 is not in the span of the given vectors.

Marking scheme: 1 mark for writing the span properly. 1 mark for writing
the system. 2 marks for rightfully concluding to the absence of solutions to
the system, 1 for the conclusion that the vector does not belong to the span.
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5. Let P (1, 2, 3) and Q(2, 3, 1) be two points in R3. The aim of this exercise is to
find the coordinates of the points R(a, b, c) ∈ R3 such that

−→
PQ ⊥

−→
PR and ‖

−→
QR‖ = 3, (*)

where the symbol ⊥ means “orthogonal to”.

(a)[2] Find an equation that must be satisfied by the coordinates a, b, c of R in

order that
−→
PQ ⊥

−→
PR.

Solution: We have
−→
PQ = (1, 1,−2) and

−→
PR = (a−1, b−2, c−3). Then

−→
PQ ⊥

−→
PR⇔

−→
PQ •

−→
PR = 0

⇔ (a− 1) + (b− 2)− 2(c− 3) = 0

⇔ a+ b− 2c+ 3 = 0.

Marking scheme: Clearly stating that
−→
PQ ⊥

−→
PR ⇔

−→
PQ •

−→
PR = 0: 1

mark. Obtaining the correct equation for the plane (whatever the form):
1 mark.

(b)[1] What is the nature of the set of values of a, b, c satisfying the condition found
in (a)?

Solution: The set

{(a, b, c) ∈ R3; a+ b− 2c+ 3 = 0}

is a plane in R3.

(c)[2] State the Pythagorean Theorem in n-space.

Solution: Let u and v be two orthogonal vectors in n-space, then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Marking scheme: Stating some form of the theorem (even in two-space)
but forgetting to indicate that the vectors must be orthogonal: 1 mark.
Correct statement gets full marks.

(d)[2] Compute the norms of the vectors
−→
PQ and

−→
PR.

Solution:

‖
−→
PQ‖ =

√
6 and ‖

−→
PR‖ =

√
(a− 1)2 + (b− 2)2 + (c− 3)2
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(e)[2] Using the Pythagorean Theorem, find an equation that must be satisfied by
the coordinates a, b, c of R. [Hint: this equation is not linear.]

Solution: Since
−→
PQ ⊥

−→
PR, we can use the Pythagorean theorem:

‖
−→
PQ‖2 + ‖

−→
PR‖2 = ‖

−→
PQ+

−→
PR‖2.

The triangle PQR is a right triangle with hypothenuse QR, and a simple

geometric argument shows that ‖
−→
PQ+

−→
PR‖ = ‖

−→
QR‖: let S be the point

defined by

S = P +
−→
PQ+

−→
PR,

then PQSR is a rectangle with diagonals PS and QR. Therefore, the
conclusion of the Pythagorean theorem can be rewritten as

‖
−→
PQ‖2 + ‖

−→
PR‖2 = ‖

−→
QR‖2.

Using the norms computed earlier and the fact that ‖QR‖ = 3 by as-
sumption, we obtain

6 + (a− 1)2 + (b− 2)2 + (c− 3)2 = 9,

i.e.,
(a− 1)2 + (b− 2)2 + (c− 3)2 = 3.

Marking scheme: Writing down the Pythagorean theorem in the case
of the exercise: 1 mark. Deducing some (correct) form of the equation:
1 mark. 1 mark was also given to some incorrect solutions (not using the
Pythagorean theorem) that clearly indicated a norm related equation,

e.g., deducing an equation from ‖
−→
QR‖ = 3.

(f)[1] What is the nature of the set of values of a, b, c satisfying the conditions
found in (e)? [You can use a geometrical argument.]

Solution: The set

{(a, b, c) ∈ R3; (a− 1)2 + (b− 2)2 + (c− 3)2 = 3}

is the sphere with radius
√

3 and centered at (1, 2, 3), i.e., at P .

Marking scheme: Although not correct, stating that the equation is a
quadratic was accepted.
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(g)[2] Deduce a system characterizing the set of points satisfying (*).

Solution: Put together the answers to (a) and (e):

a+ b− 2c = −3

(a− 1)2 + (b− 2)2 + (c− 3)2 = 3.

This was sufficient. But we could go further (bonus mark): expand the
second equation, giving a2−2a+1+b2−4b+4+c2−6c+9 = 3. Rewrite
as a2 +b2 +c2−2(a+b−2c)−2b−10c+14 = 3. Using the first equation,
a2 +b2 +c2−2b−10c+20 = 3. Collecting, a2 +(b−1)2 +(c−5)2−6 = 3,
so finally, the system reduces to a2 + (b− 1)2 + (c− 5)2 = 32.

(h)[1] What is the nature of the set of values of a, b, c satisfying the conditions
found in (g)?

Solution: The intersection of a plane and a sphere: a circle.

Marking scheme: Although not correct, stating that the equation is a
quadratic was accepted.
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6. (a)[3] Find the point of intersection of the lines L1 and L2 defined by

L1 : (x, y, z) = (1, 2, 1) + t(2, 1, 2), t ∈ R
L2 : (x, y, z) = (2, 1, 2) + s(1, 2, 1), s ∈ R.

Solution: By inspection, s = t = 1 gives the common point (3, 3, 3). If
inspection is not used, comparing coordinates,∣∣∣∣∣∣

x : 1 + 2t = 2 + s
y : 2 + t = 1 + 2s
z : 1 + 2t = 2 + s

⇒s = 2t− 1

⇒2 + t = 1 + 2(2t− 1)

⇒t = 1

⇒s = 1.

So in either equations, s = 1 = t gives the point of intersection (x, y, z) =
(3, 3, 3).

Marking scheme: 2 points for the right idea, faulty values of s, t. Solv-
ing the system using row operations is also good.

(b)[3] Find an equation of the plane containing the two lines L1 and L2.

Solution: The plane desired has normal n orthogonal to L1 and L2, so
one can use

n = (2, 1, 2)× (1, 2, 1) = (−3, 0, 3).

Using, say, the point (1, 2, 1) on L1, the equation is

(−3, 0, 3) • (x− 1, y − 2, z − 1) = 0.

Simplifying,
3x− 3z = 0

or
x = z.

Options: use (2, 1, 2) from L2 or (3, 3, 3) from part (a).

Marking scheme: 3 marks for getting to 3x− 3z = 0.
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(c)[3] Find the point on L1 closest to the point (3, 2, 0).

Solution: Option 1. Let R be the desired point, Q = (3, 2, 0) and

v = (2, 1, 2). Pick P = (1, 2, 1) on L1. Then
−→
PQ = (2, 0,−1). Then

−→
PR = projv

−→
PQ =

−→
PQ

‖v‖2
v =

2

9
(2, 1, 2).

So

R = P +
−→
PR = (1, 2, 1) +

2

9
(2, 1, 2) =

(
13

9
,
20

9
,
13

9

)
.

Option 2. Same as above but with P = (3, 3, 3) from (a).
Option 3. Let Q = (3, 2, 0), v = (2, 1, 2) and let R be the desired point
on L1. Then both Q and R lie on a plane with normal v. Writing the
point normal form of the equation of that plane,

2(x− 3) + (y − 2) + 2(z − 0) = 0,

that is, 2x + y + 2z = 8. Now use the parametric equation for L1, find
t = 2/9 and get R.
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7. Let P (1, 2, 3) be a point and (x, y, z) = (4, 1, 2) + t(1, 2,−1), t ∈ R, be the
equation of a line L in R3.

(a)[2] Find the equation of the plane through P perpendicular to the line L.

Solution: L plays the role of a direction normal to the plane, and thus
we take the normal (1, 2,−1). The point-normal form of the equation of
the plane is

(1, 2,−1) • (x− 1, y − 2, z − 3) = 0,

or, in other words,
x+ 2y − z − 2 = 0.

(b)[2] Find the equation of a line through P perpendicular to the plane with equa-
tion 2x− y − z + 4 = 0.

Solution: A normal to the plane is n = (2,−1,−1), and thus an equa-
tion of the line is

(x, y, z) = (1, 2, 3) + t(2,−1,−1), t ∈ R.
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8. Consider the following system of linear equations:

x+ y + z = 1
2x+ y + z = 2

3x+ ay + bz = c.

For what values of a, b and c does this system have

(a)[2] no solutions

(b)[2] one solution

(c)[2] more than one solution

Solution: Write the matrix associated to the system:

A =

1 1 1
2 1 1
3 a b

 .
We have

|A| =
∣∣∣∣1 1
a b

∣∣∣∣− ∣∣∣∣2 1
3 b

∣∣∣∣+

∣∣∣∣2 1
3 a

∣∣∣∣
= b− a− 2b+ 3 + 2a− 3

= a− b.

So the system has a unique solution if a 6= b and for any c.

Suppose now that a = b, and write the augmented matrix corresponding to
the system:

M =

 1 1 1 1
2 1 1 2
3 a a c

 .
Perform elementary operations:

M
R2←R2−2R1−→
R3←R3−3R1

 1 1 1 1
0 −1 −1 0
0 a− 3 a− 3 c− 3


R3←R3+(a−3)R2−→

 1 1 1 1
0 −1 −1 0
0 0 0 c− 3


Therefore, if c = 3, the system has infinitely many solutions, and if c 6= 3, it
has none. To summarize:

(a) If a = b and c 6= 3, then the system has no solution.

(b) If a 6= b, then for any c the system has a unique solution.

(c) If a = b and c = 3, then the system has infinitely many solutions.
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9. The matrix

A =


1 2 1 0 0
1 1 2 1 2
3 4 5 2 4
1 3 0 −1 −2
0 −1 1 1 2


has reduced row echelon form:

1 0 3 2 4
0 1 −1 −1 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(a)[1] The dimension of the row space of A is 2

(b)[2] A basis for the row space of A is:

Solution:
{(1, 0, 3, 2, 4), (0, 1,−1,−1,−2)}.

Marking scheme: The vectors must be listed as above. Or it must
be clear that you are listing the vectors that make up a basis. Vectors
listed not in a set and with no explanation: 1 mark only. Listing correct
vectors but as column vectors: 1 mark.

(c)[1] The dimension of the column space of A is 2

(d)[2] A basis for the column space of A is:

Solution: 


1
1
3
1
0

 ,


2
1
4
3
−1


 .

Marking scheme: The vectors must be listed as above. Or it must
be clear that you are listing the vectors that make up a basis. Vectors
listed not in a set and with no explanation: 1 mark only. Listing correct
vectors but as row vectors: 1 mark. Using vectors from the reduced row
echelon form of A and not A: 0 marks.
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(e)[1] The dimension of the null space of A is 3

(f)[2] A basis for the null space of A is:

Solution: The solution to Ax = 0 takes the form

(x1, x2, x3, x4, x5) = (−3r − 2s− 4t, r + s+ 2t, r, s, t),

or, if written vertically,
x1

x2

x3

x4

x5

 =


−3r − 2s− 4t
r + s+ 2t

r
s
t


for r, s, t ∈ R. Therefore,

x1

x2

x3

x4

x5

 = r


−3
1
1
0
0

+ s


−2
1
0
1
0

+ t


−4
2
0
0
1

 ,
and a basis for the nullspace is


−3
1
1
0
0

 ,

−2
1
0
1
0

 ,

−4
2
0
0
1


 .

Marking scheme: Both row and column forms of the vectors were ac-
cepted here. Stating the general form of the solution: 1 mark. Stating
the vectors: 1 mark.


