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INSTRUCTIONS TO STUDENTS:
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This exam has a title page, 11 pages of
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1. (a)[3] Let V be a vector space, W ⊂ V . Under what conditions is W a subspace
of V ?

(b)[4] Let A be an n×n-matrix. State four additional properties equivalent to “A
is invertible”.

(c)[3] Prove that u • (v × w) = v • (w × u).
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(d)[2] Prove the Cauchy-Schwarz inequality in 3-space.

(e)[3] State 3 of the axioms that must be satisfied for a set V to be a vector space.

(f) Let S = {v1, . . . , vp} be p vectors in an n-dimensional vector space V . State
whether the following statements are True or False.
[Note: the score on question (f) is the number of right answers minus the
number of right answers, with a minimum of 0.]

i.[1] If S is linearly independent, then p = n:

ii.[1] If S is a basis of V , then p = n:

iii.[1] If Span(S) = W , then W is a subspace of V :

iv.[1] If S is linearly independent, then S spans V :

v.[1] Let S ′ = {w1, . . . , wp} be a basis of V . Then S = S ′:
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2. Let

W =

{
M ∈M22; M =

[
a b
0 d

]
, for all a, b, d ∈ R

}
.

(a)[4] Show that W is a subspace of M22, the vector space of 2× 2-matrices.

(b)[4] Is

S =

{(
1 0
0 0

)
,

(
2 0
0 0

)
,

(
0 2
0 0

)
,

(
0 0
0 1

)}
a basis of W? If not, how should S be modified in order to be a basis of W?
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3.[6] One of the matrices

A =

[
2 1
4 2

]
and B =

[
2 1
1 2

]
is expressible as a product of elementary matrices, the other is not. Express the
one that is expressible as a product of elementary matrices as such, and explain
why the other is not.

4.[5] Is the vector −1 + 9x− x2 in the span of the vectors

{1 + x + 2x3, 3x + x2 − x3, 1− x + 2x2}?

Explain.
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5. Let P (1, 2, 3) and Q(2, 3, 1) be two points in R3. The aim of this exercise is to
find the coordinates of the points R(a, b, c) ∈ R3 such that

−→
PQ ⊥

−→
PR and ‖

−→
QR‖ = 3, (*)

where the symbol ⊥ means “orthogonal to”.

(a)[2] Find an equation that must be satisfied by the coordinates a, b, c of R in

order that
−→
PQ ⊥

−→
PR.

(b)[1] What is the nature of the set of values of a, b, c satisfying the condition found
in (a)?

(c)[2] State the Pythagorean Theorem in n-space.

(d)[2] Compute the norms of the vectors
−→
PQ and

−→
PR.

Leanne
Typewritten Text
Exercise continued on next page

Leanne
Typewritten Text
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(e)[2] Using the Pythagorean Theorem, find an equation that must be satisfied by
the coordinates a, b, c of R. [Hint: this equation is not linear.]

(f)[1] What is the nature of the set of values of a, b, c satisfying the conditions
found in (e)? [You can use a geometrical argument.]

(g)[2] Deduce a system characterizing the set of points satisfying (*).

(h)[1] What is the nature of the set of values of a, b, c satisfying the conditions
found in (g)?
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6. (a)[3] Find the point of intersection of the lines L1 and L2 defined by

L1 : (x, y, z) = (1, 2, 1) + t(2, 1, 2), t ∈ R
L2 : (x, y, z) = (2, 1, 2) + s(1, 2, 1), s ∈ R.

(b)[3] Find an equation of the plane containing the two lines L1 and L2.

(c)[3] Find the point on L1 closest to the point (3, 2, 0).
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7. Let P (1, 2, 3) be a point and (x, y, z) = (4, 1, 2) + t(1, 2,−1), t ∈ R, be the
equation of a line L in R3.

(a)[2] Find the equation of the plane through P perpendicular to the line L.

(b)[2] Find the equation of a line through P perpendicular to the plane with equa-
tion 2x− y − z + 4 = 0.
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8. Consider the following system of linear equations:

x + y + z = 1
2x + y + z = 2

3x + ay + bz = c.

For what values of a, b and c does this system have

(a)[2] no solutions

(b)[2] one solutions

(c)[2] more than one solution



DATE: December 18, 2009
PAPER # 507
COURSE: MATH 1300
EXAMINATION: Vector Geometry and Linear Algebra

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 10 of 11
TIME: 120 minutes

EXAMINER: Various

9. The matrix

A =


1 2 1 0 0
1 1 2 1 2
3 4 5 2 4
1 3 0 −1 −2
0 −1 1 1 2


has reduced row echelon form:

1 0 3 2 4
0 1 −1 −1 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(a)[1] The dimension of the row space of A is

(b)[2] A basis for the row space of A is:

(c)[1] The dimension of the column space of A is

(d)[2] A basis for the column space of A is:

(e)[1] The dimension of the null space of A is

(f)[2] A basis for the null space of A is:
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