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1.[10] Given the following system of equations:
x + y + 3z = 5

y + z = a
by + z = 2

(a) For what values of a and b does the system of equations have no solution?

(b) For what values of a and b does the system of equations have exactly one solution?

(c) For what values of a and b does the system of equations have infinitely many
solutions?
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2.[16] Let

A =


1 0 −1 2

0 0 1 0

−1 1 0 2

3 0 −2 −3


(a) Evaluate the missing 2, 3 entry x in the adjoint of A below:

adj(A) =


3 7 0 2

−3 5 x 4

0 9 0 0

3 1 0 −1



(b) The determinant of A is 9. Find A−1 by using Part (a).

(c) Let Ax = b where

b =


1
2
−1
4

 and x =


x1

x2

x3

x4

 .

Use A−1 from part (b) to find x. No credit will be given for any other method.
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3.[12] State clearly whether each of the following statements is true or false. No explanation
is necessary.

(a) det
(
(2A)−1(AT )(2AT )

)
= det(A) for all square matrices A.

(b) If det(AB−1) = det(A−1B), then A = B.

(c) The product of elementary matrices is always invertible.

(d) Let A = (aij) be the 2008× 2008 matrix such that

aij =

{
1 , if i ≤ j ,
0 , if i > j .

Then A is invertible.

(e) Let A be an n × n matrix. If A is invertible, then Ax = b has infinitely many
solutions.

(f) The following augmented matrix is in reduced row echelon form. 1 2 3 0 −2 0
0 0 1 0 3 2
0 0 0 1 −4 1


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4.[12] Let u = (2,−1, 3), v = (2, 3,−1), w = (4, 2,−2).

(a) Find the cosine of the angle θ between u and v.

(b) Find the area of the triangle with vertices (0, 0, 0), (2, 3,−1) and (4, 2,−2).

(c) Find the volume of the parallelepiped with sides u, v and w.
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5.[12] Let l be the line x = −2 + 2t, y = 1− 2t, z = −3 + t.

(a) Find an equation of the plane W perpendicular to l through the point (−1,−4, 3).

(b) Find the point of intersection of l and W .

(c) Show that the plane 5x + 3y − 4z + 11 = 0 is perpendicular to W .
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6.[12] Let u = (2,−1, 2, 3), v = (4, 1,−1, 3).

(a) Find a unit vector in the direction of v.

(b) Find all values of k such that ||ku− kv|| = 3.

(c) For what values of s and t is w = (1, 2, s, t) orthogonal to both u and v?
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7.[12] The matrix

A =


1 2 0 4 0 0 0
1 2 1 8 1 6 7
0 0 1 4 0 0 0
0 0 0 0 1 6 7


has reduced row echelon form

R =


1 2 0 4 0 0 0
0 0 1 4 0 0 0
0 0 0 0 1 6 7
0 0 0 0 0 0 0



(a) The dimension of the null space of A is .

(b) Find a basis of the null space of A.

(c) The dimension of the row space of A is .

(d) Find a basis of the row space of A.

(e) The dimension of the column space of A is .

(f) Find a basis of the column space of A.
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8.[9] Suppose that a and b are orthogonal vectors in R3 with unit length.

(a) Give a reason why {a,b} is not a basis of R3.

(b) Give a reason why {a,b, a + b, a− b} is not a basis of R3.

(c) Give a reason why {a,b, 2a− 3b} is not a basis of R3.
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9.[15] For the vector spaces V and W given below, state whether W is a subspace of V . Justify
your answer.

(a) V = M2×2, the set of 2× 2 matrices, and W consists of all 2× 2 invertible matrices.

(b) V = M2×2, and W consists of all 2× 2 matrices with at least one zero row.

(c) V = R3 and W consists of all vectors in R3 of the form (a, b, a− b).
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10.[10] Let u1 = (1, 2, 0, 3), u2 = (0, 1, 2, 1), v1 = (1, 3, 2, 4) and v2 = (1, 0, 0, 2).

Let V = span{u1,u2}.
(a) Is v1 in V ? Justify your answer.

(b) Is v2 in V ? Justify your answer.

(c) What is the dimension of V ? Find a basis for V and justify your answer.


