JUNE 15, 2001 SUMMER EVENING FINAL EXAM						
PAPER NO.	28	PAGE NO: <u>1 of 10</u>				
DEPARTMENT &	& COURSE NO: <u>136.130</u>	TIME: <u>2</u> HOURS				
EXAMINATION:	<u>Vector Geometry & Linear</u> <u>Algebra</u>	EXAMINER: <u>D. Stebnicky</u>				
NAME:						
_	(Please print clearly)	(ID number)				

SIGNATURE:

(I understand that cheating is a serious offence)

INSTRUCTIONS TO THE STUDENT

This is a two-hour exam. Please show your work clearly.

No calculators, texts, notes or other aids are permitted.

This exam has a header page, 9 pages of questions and two blank pages for rough work. Please check that you have all the pages. You may remove the blank pages if you want.

The value of each question is indicated in the left-hand margin beside the statement of the question. The total value of all questions is 120.

Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.

JUNE 15, 2001 SU	MMER EVENING FINAL EXAMINATION
PAPER NO28	PAGE NO: <u>2 of 10</u>
DEPARTMENT & COURSE NO: <u>136</u>	<u>.130</u> TIME: <u>2</u> HOURS
EXAMINATION: <u>Vector Geometry & I</u> <u>Algebra</u>	Linear EXAMINER: <u>D. Stebnicky</u>

Values

[10] 1. Consider the following system of equations:

(a) Solve the system by transforming the augmented matrix to row reduced echelon form.

(b) Express your solution in vector form and give a geometric interpretation of the intersection of the three planes represented by the equations.

JUNE 15, 2001

SUMMER EVENING FINAL EXAMINATION

 PAPER NO. _____28
 PAGE NO: _____3 of _10

 DEPARTMENT & COURSE NO: _____36.130
 TIME: ______HOURS

 EXAMINATION: Vector Geometry & Linear
 EXAMINER: D. Stebnicky

Values

[16] 2. Given
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & -2 & -1 \end{bmatrix}$
 $D = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 2 & 0 \end{bmatrix}$, $E = \begin{bmatrix} 4 & -6 \\ -5/3 & 5/2 \end{bmatrix}$
find the following, or explain why they do not exist:

(a) $2A + B^{T}D$

(b) E⁻¹

(c) AC

(d) **x**, the solution to $A\mathbf{x} = \mathbf{b}$ such that $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

JUNE 15, 2001	SUMMER EVENING FINAL EXAMINATION					
PAPER NO		PAGE NO	D: <u>4</u>	of 10		
DEPARTMENT & COURSE NO:	<u>136.130</u>	TIME:	2	_HOURS		
EXAMINATION: <u>Vector Geometry</u> <u>Algebra</u>	<u>« & Linear</u>	EXAMIN	ER: <u>D.</u> ;	<u>Stebnicky</u>		
Values						

 $\begin{bmatrix} 6 \end{bmatrix} \quad 3. \quad \begin{bmatrix} -x & + & 2y & - & 3z & = & 1 \\ 2x & + & z & = & 0 \\ 3x & - & 4y & - & 4z & = & 0 \end{bmatrix}$

Use Cramer's rule to solve for x.

[8] 4. Find an equation in point-parallel form of the line through P(2, 1, -2) and perpendicular to the plane 3x + 2y + 5z = 7. What is the point of intersection of this line with the plane 2x - 3y + z = -4?

JUNE 15, 2001 SUM	SUMMER EVENING FINAL EXAMINATION					
PAPER NO28	PAGE NO: <u>5 of 10</u>					
DEPARTMENT & COURSE NO: 136.130	TIME: <u>2</u> HOURS					
EXAMINATION: <u>Vector Geometry & Line</u> <u>Algebra</u>	ear EXAMINER: <u>D. Stebnicky</u>					

Values

- [16] 5. Let P(1,2-1), Q(3,3,-4) and R(2,3,0) be three points in \mathbb{R}^3 .
 - (a) Find a point-normal form and a standard form for the plane determined by P, Q and R.

(b) Find the area of the triangle determined by P, Q and R.

(c) Find $\cos\theta$ where θ is the angle at P. What can you conclude about \overline{PQ} and \overline{PR} ?

JUNE 15, 2001 SUMM	ER EVENING FINAL EXAMINATION
PAPER NO28	PAGE NO: <u>6 of 10</u>
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2</u> HOURS
EXAMINATION: <u>Vector Geometry & Linea</u> <u>Algebra</u>	EXAMINER: <u>D. Stebnicky</u>

Values

101	6	Consider the system of equations.	ax ₁	_	8x ₂	=	1
[٥]	0.	Consider the system of equations:	- 2x ₁	+	ax ₂	=	b.

(a) Using the coefficient matrix of the system find the values of a such that the system will not have a unique solution.

(b) If a = 4 find the value of b that will make the system have infinitely many solutions.

[4] 7. For matrices A and B, assume that A(BA) is defined. Let A be of size 4×5 . Find the size of B. (explain).

JUNE 15, 2001	SUMMER E	VENING F	FINAL E	XAMINATION
PAPER NO. <u>28</u>		PAGE NO	D: <u>7</u>	of 10
DEPARTMENT & COURSE NO:	<u>136.130</u>	TIME:	2	_HOURS
EXAMINATION: <u>Vector Geometry</u> <u>Algebra</u>	<u>v & Linear</u>	EXAMIN	ER: <u>D. S</u>	Stebnicky

Values

			[2	-3	5]	
[12]	8.	Let	$\mathbf{A} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$	1	-3.	
			0	0	2	
		(a)	Find th	e adjo	oint of	A.

(b) Using the adjoint of A, find A^{-1} .

JUNE 15, 2001 SUMM	MER EVENING FINAL EXAMINATION
PAPER NO28	PAGE NO: 8 of 10
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2</u> HOURS
EXAMINATION: <u>Vector Geometry & Line</u> <u>Algebra</u>	ar EXAMINER: <u>D. Stebnicky</u>

Values

[16] 9. (a) Let $\mathbf{v}_1 = (1, -1, 0, 1)$, $\mathbf{v}_2 = (-2, 3, -1, 0)$ and $\mathbf{v}_3 = (1, -\frac{1}{2}, -\frac{1}{2}, 2)$. Express \mathbf{v}_3 as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

(b) Determine whether or not the following vectors in \mathbb{R}^3 are linearly dependent $\mathbf{v}_1 = (-1,0,1)$ $\mathbf{v}_2 = (4,-3,5)$ $\mathbf{v}_3 = (1,-4,3)$.

JUNE 15, 2001	SUMMER E	VENING F	FINAL	EXAMINATION
PAPER NO28		PAGE NO): <u>9</u>	of 10
DEPARTMENT & COURSE NO:	<u>136.130</u>	TIME:	2	HOURS
EXAMINATION: Vector Geometry Algebra	/ & Linear	EXAMIN	ER: <u>D</u>	. Stebnicky

Values

[16] 10. Consider the homogeneous system of equations:

(a) Find a basis for the solution space of the system.

(b) Let A be the coefficient matrix of the system. Find a basis for the column space of A such that the basis is made up of columns of A.

(c) What is the rank of the row space of A?

JUNE 15, 2001	SUMMER EV	VENING F	FINAL E	XAMINATION
PAPER NO28		PAGE NO	0: <u>10</u>	_of 10
DEPARTMENT & COURSE NO: 1	136.130	TIME:	2	_HOURS
EXAMINATION: <u>Vector Geometry</u> <u>Algebra</u>	<u>& Linear</u>	EXAMIN	ER: <u>D. S</u>	tebnicky

Values

[8] 11. Let S be the set of all vectors of the form (a, b, 2a + b) in \mathbb{R}^3 .

(a) Prove that S is a subspace of R^3 .

(b) Find a spanning set for S.