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(12) 1. Solve the following system by Gauss-Jordan elimination:

3 6 3 0

2 4 0

2 4 0

1 2 4

1 2 3 4

1 2 3 4

x x x

x x x x

x x x x

+ − =
+ + + =
+ − + =

No marks will be given for any other method.

SOLUTION:

3 6 0 3

2 4 1 1

1 2 1 4

−

−
















  is row equivalent to

1 2 0 0

0 0 1 0

0 0 0 1

















x x

x

x

1 2

3

4

2 0

0

0

+ =
=
=

solution :

 

x t

x t

x

x

2

1

3

4

2

0

0

=
= −
=
=

       where t  is arbitrary
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(6) 2. a) Find the determinant of  M =
−

















2 3 4

0 1 0

0 0 5

.

SOLUTION:

det M = −10

b) Suppose A  is a  3 3× matrix that is invertible, and that it can be put into row-
echelon form by the following sequence of elementary row operations:

1) add  2   times row 1 to row 2;
2) permute rows 2 and 3;
3) multiply row 3 by  5 .

Find the determinant of A.

SOLUTION:

− ⋅ ⋅ =

= −

1 5 1

1
5

det

det

A

A

 (9) 3. Let  A =










1 2

2 1
.  Express  A−1  as an explicit product of elementary matrices.

SOLUTION:

 

1 2

2 1

2
1 2

0 3

1
3

1 2

0 1

2
1 0

0 1

2 2 1

2 2

1 1 2











→ −
−











→ − 









→ −










r r r

r r

r r r

     

E

E

E

1

2

3

1 0

2 1

1 0

0 1
3

1 2

0 1

=
−











= −










=
−









So 
  
A− =

−







 ⋅

−








 ⋅

−








1 1 2

0 1

1 0

0 1 3

1 0

2 1
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(4) 4. Let A,  B  and  C  be  n n×   matrices and suppose that  2 3AB AC In− = .  Indicate

how you can tell that  A−1  exists, and find  A−1  in terms of  B  and  C.

SOLUTION:

  

2 3

2 3

2 31

AB AC I

A B C I

A B C

n

n

− =
− =

= −−

( )

(7) 5. Let  X xij= [ ]   be a  2 2×   matrix.  Given that  X XT+ =0  and  x12 7= ,  find  X.

SOLUTION:

 

x

x x

x x

x

x

x

x

11

21 22

11 21

22

11

21

22

7

7

0 0

0 0

2 0

7 2 0

2 0









 +









 =











=
+ =

=

so :

 

x x

x

X

11 22

21

0

7

0 7

7 0

= =
= −

=
−










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(11) 6. Find the inverse of the following matrix by row reduction:

2 0 1

2 1 0

2 0 1

−
−

















No marks will be given for any other method.

SOLUTION:

2 0 1 1 0 0

2 1 0 0 1 0

2 0 1 0 0 1

−
−
















 is row equivalent to 

1 0 0 1
4 0 1

4
0 1 0 1

2 1 1
2

0 0 1 1
2 0 1

2

−

−



















thus :

 

A− =

−

−



















1

1
4 0 1

4
1

2 1 1
2

1
2 0 1

2
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(11) 7. Let  A =
−

















2 2 0

2 0 2

2 2 2

.  The adjoint of  A  is partially computed as shown.  Enter the

two missing numbers in the boxes.

Adj A =
− −

− −

− −



















4 4

4 4

4 8 4

.

Find  detA.  Find  A−1.

SOLUTION:

C31=2*2-0=4
C12=-(2*2-(-2*2))=-8

det A = ⋅ − + ⋅ − = −2 4 2 8 24

A
A

Adj A− =

=
−

− −
− −

− −

















1 1

1
24

4 4 4

8 4 4

4 8 4

det
( )

-8

4


