136.275, Assignment No. 1

September 22, 2004

The assignment is due Wednesday, September 29, 2004 in class. Late assignments receive a mark zero. Show all of your work.

- 1. Let $\{a_n\}$ be a sequence such that $\lim a_n = L$ and let $L \neq 0$.
 - a) Prove that eventually a_n≠ 0, i.e. that there exists an N in IN such that for every n≥ N we have that a_n≠ 0. (Hint: Show that, eventually, |a_n| > ^{|L|}/₂.) [5]
 b) Prove by using the definition of the limit that lim_{n→∞} 1/_{a_n} = 1/_L. [5]
- 2. a) Prove by using the definition of the limit that if $0 \le r < 1$, we have that $\lim_{n \to \infty} r^n = 0$. [4]
 - b) State the theorem by which part a) implies that $\lim_{n \to \infty} r^n = 0$ for $-1 < r \le 0$. [2]
 - c) Give an example of a sequence to show that the convergence of $\{ |a_n| \}$ does not imply the convergence of $\{ a_n \}$. [2]
- 3. Determine if the sequence $\{a_n\}$ converges or not, and if it does, find the limit:
 - a) $a_n = \sqrt{n^2 + 1} \sqrt{n^2 + 5}$, [3] b) $a_n = \frac{(\ln n)^2}{(\ln n)^2}$ [3]

b)
$$a_n = \frac{n}{n}$$
, [3]
c) $a_n = 3e^n + \sin(n^2 + 1)$, [3]

c)
$$a_n = 5c + \sin(n + 1)$$
, [5]
 $1^2 + 2^2 + n^2$ [2]

d) $a_n = \frac{1}{n^3} + \frac{2}{n^3} + \dots + \frac{n}{n^3}$. [3]

4. a) Use the Squeeze Theorem to show the convergence of the sequence $a_n = \frac{2^n}{n!}$. [4] b) Consider the sequence $\{a_n\}$ whose n-th term is $a_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + (k/n)}$. Show that $\lim_{n \to \infty} a_n = \ln 2$ by interpreting a_n as the Riemann sum of a definite integral. State all of the theorems on integrals that you are using. [5]

5. Give the definition of $\lim_{n \to \infty} a_n = \infty$ and use it to prove that $\lim_{n \to \infty} 2\ln(5n^2 - 3) = \infty$.[5] Total [44/42]