136.275, Assignment No. 5 February 4, 2005

The assignment is due Friday, February 11, 2004 in class. Late assignments receive a mark zero.

- 1. a) Let f(x,y) be such that $\lim_{(x,y)\to(a,b)} f(x,y) = 0$ and let g(x, y) be bounded in a neighbourhood of the point (a, b), i.e. $\exists r > 0, \exists M > 0$, such that $\forall (x,y) \in D((a,b);r)$ we have $|g(x, y)| \leq M$. Use the ε, δ definition of the limit to prove that $\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = 0$. [3]
- b) Prove that if a function f is differentiable at the point (x,y) and if $D_u f(x,y) = 0$ in two nonparallel directions, then $D_u f(x,y) = 0$ in all directions. [4]
- 2. a) A particle is moving along a metal plate in the xy plane with velocity v= <1,-4> at the point (3, 2). Given that the temperature of the plate is T(x, y) = y² ln x, x > 0, find dT/dt at the point (3, 2). What is the direction of the greatest increase of the temperature at the point (3, 2)? [5]
 b)Let H(u,v) = f(uv, u/v). Find ∂²H / ∂v² in terms of u, v and partial derivatives of f in terms of (uv and u/v.) [5]
- 3. a) Find the equation of the tangent plane to the surface $z = x^2 e^{2y}$ at the point (1, ln2, 4). [4]
 - b) Find all points on the surface z=2-xy at which the normal line passes through the origin. [5]
- 4. Let d be the usual metric on \mathbb{R}^2 , let $A = \{(x, y); x > 0, y = \sin \frac{1}{x}\}$,

B={(x,y); $x \in \mathbb{Z}$, y = x} and C=D(0; 2)\{(-1, 0), (1, 0) }. For each of A, B and C determine by explaining your work:

- a) interior points and boundary points,
- b) are they open, closed or neither,
- c) are they bounded or not.
- 5. Let $f(x, y) = xe^{y} x^{2} e^{y}$.
 - a) Determine the local extremes and saddle points of f on \mathbb{R}^2 . [4]
 - b) Find the absolute extremes of f over the closed region bounded by $y=\ln x$, y=0 and x=e. [6]

[7]