> restart:
> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
Consider the transformation from cartesian to polar coordinates in two dimensions
> x:=(r,theta)->r *cos(theta);
> y:=(r,theta)->r*sin(theta);
Define the jacobian of the transformation
i.e. determinant of partial derivatives
> j:=jacobian([x(r,theta),y(r,theta)],[r,theta]);
> detj:=det(j);
> detj:=simplify(%);
The element of area in cartesian coordinates is dA=dxdy and in polar coordinates dA=rdrd
The relationship between them is just dxdy=
Consider cylindrical polar coordinates:
> x:=(r,theta,z)->r*cos(theta);
> y:=(r,theta,z)->r*sin(theta);
> z:=(r,theta,z)->z;
> j:=jacobian([x(r,theta,z),y(r,theta,z),z(r,theta,z)],[r,theta,z]);
> detj:=det(j);
> detj:=simplify(%);
Hence the element of volume dV=dx dy dz = |J|
Spherical Coordinates
> x:=(r,theta,phi)->r*sin(theta)*cos(phi);
> y:=(r,theta,phi)->r*sin(theta)*sin(phi);
> z:=(r,theta,phi)->r*cos(theta);
> j:=jacobian([x(r,theta,phi),y(r,theta,phi),z(r,theta,phi)],[r,theta,phi]);
> detj:=det(j);
> detj:=simplify(%);
Hence the element of volume dV=dx dy dz = |J|