Publications

Page 5 of 6

  1. Lockery, D., Peters, J.F., 2007, Robotic target tracking with approximation space-based feedback during reinforcement learning, Springer best paper award, in: Proceedings of Eleventh International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007), Joint Rough Set Symposium (JRS 2007), Lecture Notes in Artificial Intelligence, vol. 4482, pp. 483-490.
  2. Lockery, D., Peters, J.F.: Adaptive Learning by a Target-Tracking System. Int. Journal of Intelligent Computing and Cybernetics 1 (1) (2008), 1-28. Received IJICC Best Paper Award
  3. Orlowska, E., Peters, J.F., Rozenberg, G., Skowron, A.: New Frontiers in Scientific Discovery. Commemorating the Life and Work of Zdzislaw Pawlak. IOS Press, Amsterdam (2007). ISBN 978-1-58603-717-8.
  4. Szturm, T., Peters, J.F., Otto, C., Kapadia, N., Desai, A.: Task-specific rehabilitation of finger-hand function using interactive computer gaming. Ach. Phys. Med. Rehabil. 89, 2008, 2213-2217.
  5. J.F. Peters, M. Borkowski, C. Henry, D. Lockery, Monocular vision system that learns with approximation spaces. In: Hassanien, A.E., Slezak, D., Suraj, Z., Lingras, P. (Eds.), Rough Set Computing: Toward Perception Based Computing, Idea Group Publishing, Hershey, PA (2006), 1-22.
  6. Peters, J.F., 2007, Near Sets. Toward Approximation Space-Based Object Recognition, In: Yao, Y., Lingras, P., Wu, W.-Z, Szczuka, M., Cercone, N., Slezak, D., Eds., Proc. of the Second Int. Conf. on Rough Sets and Knowledge Technology (RSKT07), Joint Rough Set Symposium (JRS07), Lecture Notes in Artificial Intelligence 4481, Springer, Berlin, pp. 22-33.
  7. J.F. Peters, S. Shahfar, S. Ramanna, T. Szturm, Biologically-inspired adaptive learning: A near set approach, In: Proc. Frontiers in the Convergence of Bioscience and Information Technologies (FBIT07), IEEE, NJ, 11 October 2007, 403-408.
  8. Peters, J.F.: Classification of objects by means of features. In: Proc. IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007). Honolulu, Hawaii, 1-5 April (2007) 1-8.
  9. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. G. Lindemann, H. Schlilngloff et al. (Eds.), Proc. Concurrency, Specification & Programming (CS&P'2006). Informatik-Berichte Nr. 206, Humboldt-Universitat zu Berlin (2006) 434-445.
  10. Peters, J.F., 2007, Perceptual granulation in ethology-based reinforcement learning, In: Pedrycz, W., Skowron, A., Kreinovich, V. (Eds.), Handbook on Granular Computing, Wiley, NY, in press.
  11. Peters, J.F., Pedrycz, W.: Computational intelligence. In: EEE Encyclopedia. John Wiley & Sons, NY (2007), in press.
  12. Peters, J.F.: Classification of Perceptual Objects by Means of Features. International Journal of Information Technology and Intelligent Computing 3 (2), 2008, 1-35.
  13. Peters, J.F., Skowron, A.: Zdzislaw Pawlak: Life and work, Transactions on Rough Sets, vol. V (2007) 1-24.
  14. Peters, J.F., Near sets. General theory about nearness of objects, Applied Mathematical Sciences 1 (53) (2007) 2609-2629. http://www.m-hikari.com/ams/ams-password-2007/ams-password53-56-2007/petersAMS53-56-2007.pdf
  15. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of Objects: Extension of Approximation Space Model. Fundamenta Informaticae, IOS Press, 79 (2007) 1-16.
  16. Ramanna, S., Peters, J.F., Skowron, A.: Approaches to Conflict Dynamics based on Rough Sets, Fundamenta Informaticae 75(1-4) (2007) 453-468.
  17. Ramanna, S., Skowron, A., Peters, J.F.: Approximate Adaptive Learning During Conflict Resolution. International Journal of Information Technology and Intelligent Computing 2 (2007), in press.
  18. Ramanna, S., Peters, J.F., Skowron, A.: Approaches to conflict dynamics based on rough sets. Fundamenta Informaticae 75 (1-4), January (2007) 453-468.
  19. Peters, J.F., Skowron, A., Duntsch, I., Grzymala-Busse, J., Orlowska, E., Polkowski, L. (Eds.): Transactions on Rough Sets VI (2007). ISBN 978-3-540-71198-8.
  20. Peters, J.F.: Granular computing in approximate adaptive learning. International Journal of Information Technology and Intelligent Computing (2007), in press.
  21. Peters, J.F., Henry, C.: Approximation spaces in off-policy Monte Carlo learning. Engineering Applications of Artificial Intelligence. The International Journal of Intelligent Real-Time Automation, Elsevier. 20(5) (2007), 667-675.
  22. J.F. Peters, Toward approximate adaptive learning. In: M. Kryszkiewicz, J.F. Peters, H. Rybinski, A. Skowron, Eds.: Rough Sets and Emerging Intelligent Systems Paradigms in Memoriam Zdzislaw Pawlak, Lecture Notes in Artificial Intelligence, 4585, Springer, Berlin Heidelberg (2007), 57-68.
  23. Peters, J.F., 2007, Near Sets. Toward Approximation Space-Based Object Recognition, In: Yao, Y., Lingras, P., Wu, W.-Z, Szczuka, M., Cercone, N., Slezak, D., Eds., Proc. of the Second Int. Conf. on Rough Sets and Knowledge Technology (RSKT07), Joint Rough Set Symposium (JRS07), Lecture Notes in Artificial Intelligence 4481, Springer, Berlin, pp. 22-33.
  24. Peters, J.F.: Near sets: Special theory about nearness of objects. Fundamenta Informaticae, , vol. 75 (1-4) (2007) 407-433.
  25. Peters J.F., Henry C., Gunderson D.S.: Biologically-inspired approximate adaptive learning control strategies: A rough set approach, International Journal of Hybrid Intelligent Systems, 3 (2006), 1-14.